denoiseImage
Denoise image using deep neural network
Syntax
Description
Examples
Load the pretrained denoising convolutional neural network, "DnCNN".
net = denoisingNetwork("DnCNN");Load a grayscale image into the workspace, then create a noisy version of the image.
I = imread("cameraman.tif"); noisyI = imnoise(I,"gaussian",0,0.01);
Display the two images as a montage.
montage({I,noisyI})
title("Original Image (Left) and Noisy Image (Right)")
Remove noise from the noisy image, then display the result.
denoisedI = denoiseImage(noisyI,net);
imshow(denoisedI)
title("Denoised Image")
Input Arguments
Noisy image, specified as a single 2-D image or a stack of 2-D images.
A can be:
A 2-D grayscale image with size m-by-n.
A 2-D multichannel image with size m-by-n-by-c, where c is the number of image channels. For example, c is 3 for RGB images, and 4 for four-channel images such as RGB images with an infrared channel.
A stack of equally-sized 2-D images. In this case,
Ahas size m-by-n-by-c-by-p, where p is the number of images in the stack.
Data Types: single | double | uint8 | uint16
Denoising deep neural network, specified as a dlnetwork (Deep Learning Toolbox) object. The
network should be trained on images with the same number of color channels
as A. The input size of the network does not need to
match the size of A.
If the noisy image or stack of images A has only one
channel and has Gaussian noise, then you can get a pretrained network
by using the denoisingNetwork function. For more information
about creating a denoising
network, see
Train and Apply Denoising Neural Networks.
Output Arguments
Denoised image, returned as a single 2-D image or a stack of 2-D images.
B has the same size and data type as
A.
Version History
Introduced in R2017bStarting in R2024a, DAGNetwork (Deep Learning Toolbox) and SeriesNetwork (Deep Learning Toolbox) objects are not recommended. Instead, specify the
denoising network as a dlnetwork (Deep Learning Toolbox) object.
There are no plans to remove support for DAGNetwork and
SeriesNetwork objects. However, dlnetwork
objects have these advantages:
dlnetworkobjects support a wider range of network architectures which you can then easily train using thetrainnet(Deep Learning Toolbox) function or import from external platforms.dlnetworkobjects provide more flexibility. They have wider support with current and upcoming Deep Learning Toolbox functionality.dlnetworkobjects provide a unified data type that supports network building, prediction, built-in training, compression, and custom training loops.dlnetworktraining and prediction is typically faster thanDAGNetworkandSeriesNetworktraining and prediction.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Sélectionner un site web
Choisissez un site web pour accéder au contenu traduit dans votre langue (lorsqu'il est disponible) et voir les événements et les offres locales. D’après votre position, nous vous recommandons de sélectionner la région suivante : .
Vous pouvez également sélectionner un site web dans la liste suivante :
Comment optimiser les performances du site
Pour optimiser les performances du site, sélectionnez la région Chine (en chinois ou en anglais). Les sites de MathWorks pour les autres pays ne sont pas optimisés pour les visites provenant de votre région.
Amériques
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)