Documentation

acsch

Inverse hyperbolic cosecant

Description

example

Y = acsch(X) returns the inverse hyperbolic cosecant of the elements of X. The function accepts both real and complex inputs. All angles are in radians.

Examples

collapse all

Find the inverse hyperbolic cosecant of the elements of vector X. The acsch function acts on X element-wise.

X = [2 -3 1+2i];
Y = acsch(X)
Y = 1×3 complex

0.4812 + 0.0000i  -0.3275 + 0.0000i   0.2156 - 0.4016i

Plot the inverse hyperbolic cosecant function over the intervals $-20\le x\le -1$ and $1\le x\le 20$.

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2))
grid on
xlabel('x')
ylabel('acsch(x)') Input Arguments

collapse all

Hyperbolic cosecant of angle, specified as a scalar, vector, matrix, or multidimensional array. The acsch operation is element-wise when X is nonscalar.

Data Types: single | double
Complex Number Support: Yes

collapse all

Inverse Hyperbolic Cosecant

For real values $x$ in the domain $x<0$ and $x>0$, the inverse hyperbolic cosecant satisfies

${\text{csch}}^{-1}\left(z\right)={\mathrm{sinh}}^{-1}\left(\frac{1}{z}\right)=\mathrm{log}\left(\frac{1}{x}+\sqrt{\frac{1}{{x}^{2}}+1}\right).$

For complex numbers $z=x+iy$, the call acsch(z) returns complex results.