This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform (DFT). The DFT is actually one step in the computation of the DCT for a sequence. The DCT, however, has better energy compaction than the DFT, with just a few of the transform coefficients representing the majority of the energy in the sequence. This property of the DCT makes it useful in applications such as data communications and signal coding.

DCT Variants

The DCT has four standard variants. For a signal x of length N, and with δk the Kronecker delta, the transforms are defined by:

  • DCT-1:

y(k)=2N-1n=1Nx(n)11+δn1+δnN11+δk1+δkNcos(πN-1(n-1)(k-1))

  • DCT-2:

y(k)=2Nn=1Nx(n)11+δk1cos(π2N(2n-1)(k-1))

  • DCT-3:

y(k)=2Nn=1Nx(n)11+δn1cos(π2N(n-1)(2k-1))

  • DCT-4:

y(k)=2Nn=1Nx(n)cos(π4N(2n-1)(2k-1))

The Signal Processing Toolbox function dct computes the unitary DCT of an input array.

Inverse DCT Variants

All variants of the DCT are unitary (or, equivalently, orthogonal): To find their inverses, switch k and n in each definition. In particular, DCT-1 and DCT-4 are their own inverses, and DCT-2 and DCT-3 are inverses of each other:

  • Inverse of DCT-1:

x(n)=2N-1k=1Ny(k)11+δk1+δkN11+δn1+δnNcos(πN-1(k-1)(n-1))

  • Inverse of DCT-2:

x(n)=2Nk=1Ny(k)11+δk1cos(π2N(k-1)(2n-1))

  • Inverse of DCT-3:

x(n)=2Nk=1Ny(k)11+δn1cos(π2N(2k-1)(n-1))

  • Inverse of DCT-4:

x(n)=2Nk=1Ny(k)cos(π4N(2k-1)(2n-1))

The function idct computes the inverse DCT for an input sequence, reconstructing a signal from a complete or partial set of DCT coefficients.

Signal Reconstruction Using DCT

Because of the energy compaction property of the DCT, you can reconstruct a signal from only a fraction of its DCT coefficients. For example, generate a 25 Hz sinusoidal sequence sampled at 1000 Hz.

t = 0:1/1000:1;
x = sin(2*pi*25*t);

Compute the DCT of this sequence and reconstruct the signal using only those components with value greater than 0.1. Determine how many coefficients out of the original 1000 satisfy the requirement.

y = dct(x);
y2 = find(abs(y) < 0.1);
y(y2) = zeros(size(y2));
z = idct(y);

howmany = length(find(y))
howmany = 64

Plot the original and reconstructed sequences.

subplot(2,1,1)
plot(t,x)
ax = axis;
title('Original Signal')

subplot(2,1,2)
plot(t,z)
axis(ax)
title('Reconstructed Signal')

One measure of the accuracy of the reconstruction is the norm of the difference between the original and reconstructed signals, divided by the norm of the original signal. Compute this estimate and express it as a percentage.

norm(x-z)/norm(x)*100
ans = 1.9437

The reconstructed signal retains approximately 98% of the energy in the original signal.

See Also

|

Related Topics