resubLoss
Classification error by resubstitution
Syntax
Description
returns a vector of classification errors for the trees in the pruning sequence
L
= resubLoss(tree
,'Subtrees'
,subtreevector)subtreevector
.
[
returns the vector of standard errors of the classification errors.L
,se
] = resubLoss(tree
,'Subtrees'
,subtreevector)
[
returns the vector of numbers of leaf nodes in the trees of the pruning sequence.L
,se
,NLeaf
] = resubLoss(tree
,'Subtrees'
,subtreevector)
[
returns loss statistics with additional options specified by one or more
L
,___] = resubLoss(tree
,___,Name,Value
)Name,Value
pair arguments.
Examples
Compute the In-Sample Classification Error
Compute the resubstitution classification error for the ionosphere
data.
load ionosphere
tree = fitctree(X,Y);
L = resubLoss(tree)
L = 0.0114
Examine the Classification Error for Each Subtree
Unpruned decision trees tend to overfit. One way to balance model complexity and out-of-sample performance is to prune a tree (or restrict its growth) so that in-sample and out-of-sample performance are satisfactory.
Load Fisher's iris data set. Partition the data into training (50%) and validation (50%) sets.
load fisheriris n = size(meas,1); rng(1) % For reproducibility idxTrn = false(n,1); idxTrn(randsample(n,round(0.5*n))) = true; % Training set logical indices idxVal = idxTrn == false; % Validation set logical indices
Grow a classification tree using the training set.
Mdl = fitctree(meas(idxTrn,:),species(idxTrn));
View the classification tree.
view(Mdl,'Mode','graph');
The classification tree has four pruning levels. Level 0 is the full, unpruned tree (as displayed). Level 3 is just the root node (i.e., no splits).
Examine the training sample classification error for each subtree (or pruning level) excluding the highest level.
m = max(Mdl.PruneList) - 1;
trnLoss = resubLoss(Mdl,'SubTrees',0:m)
trnLoss = 3×1
0.0267
0.0533
0.3067
The full, unpruned tree misclassifies about 2.7% of the training observations.
The tree pruned to level 1 misclassifies about 5.3% of the training observations.
The tree pruned to level 2 (i.e., a stump) misclassifies about 30.6% of the training observations.
Examine the validation sample classification error at each level excluding the highest level.
valLoss = loss(Mdl,meas(idxVal,:),species(idxVal),'SubTrees',0:m)
valLoss = 3×1
0.0369
0.0237
0.3067
The full, unpruned tree misclassifies about 3.7% of the validation observations.
The tree pruned to level 1 misclassifies about 2.4% of the validation observations.
The tree pruned to level 2 (i.e., a stump) misclassifies about 30.7% of the validation observations.
To balance model complexity and out-of-sample performance, consider pruning Mdl
to level 1.
pruneMdl = prune(Mdl,'Level',1); view(pruneMdl,'Mode','graph')
Input Arguments
tree
— Classification tree
ClassificationTree
object
Classification tree, specified as a ClassificationTree
object.
Use the fitctree
function to create a classification
tree object.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: L = resubLoss(tree,'SubTrees','all')
LossFun
— Loss function
'mincost'
(default) | 'binodeviance'
| 'classifcost'
| 'classiferror'
| 'exponential'
| 'hinge'
| 'logit'
| 'quadratic'
| function handle
Loss function, specified as the comma-separated pair consisting of
'LossFun'
and a built-in loss function name or function handle.
This table lists the available loss functions. Specify one using its corresponding character vector or string scalar.
Value Description "binodeviance"
Binomial deviance "classifcost"
Observed misclassification cost "classiferror"
Misclassified rate in decimal "exponential"
Exponential loss "hinge"
Hinge loss "logit"
Logistic loss "mincost"
Minimal expected misclassification cost (for classification scores that are posterior probabilities) "quadratic"
Quadratic loss 'mincost'
is appropriate for classification scores that are posterior probabilities. Classification trees return posterior probabilities as classification scores by default (seepredict
).Specify your own function using function handle notation.
Suppose that
n
be the number of observations inX
andK
be the number of distinct classes (numel(tree.ClassNames)
). Your function must have this signaturewhere:lossvalue =
lossfun
(C,S,W,Cost)The output argument
lossvalue
is a scalar.You choose the function name (
lossfun
).C
is ann
-by-K
logical matrix with rows indicating which class the corresponding observation belongs. The column order corresponds to the class order intree.ClassNames
.Construct
C
by settingC(p,q) = 1
if observationp
is in classq
, for each row. Set all other elements of rowp
to0
.S
is ann
-by-K
numeric matrix of classification scores. The column order corresponds to the class order intree.ClassNames
.S
is a matrix of classification scores, similar to the output ofpredict
.W
is ann
-by-1 numeric vector of observation weights. If you passW
, the software normalizes them to sum to1
.Cost
is a K-by-K
numeric matrix of misclassification costs. For example,Cost = ones(K) - eye(K)
specifies a cost of0
for correct classification, and1
for misclassification.
Specify your function using
'LossFun',@
.lossfun
For more details on loss functions, see Classification Loss.
Data Types: char
| string
| function_handle
Name,Value
arguments associated with pruning subtrees:
Subtrees
— Pruning level
0
(default) | vector of nonnegative integers | "all"
Pruning level, specified as a vector of nonnegative integers in ascending order or
"all"
.
If you specify a vector, then all elements must be at least 0
and
at most max(tree.PruneList)
. 0
indicates
the full, unpruned tree and max(tree.PruneList)
indicates
the completely pruned tree (i.e., just the root node).
If you specify "all"
, then resubLoss
operates on all
subtrees (in other words, the entire pruning sequence). This specification is equivalent
to using 0:max(tree.PruneList)
.
resubLoss
prunes tree
to
each level indicated in Subtrees
, and then estimates
the corresponding output arguments. The size of Subtrees
determines
the size of some output arguments.
To invoke Subtrees
, the properties PruneList
and
PruneAlpha
of tree
must be nonempty. In
other words, grow tree
by setting Prune="on"
, or
by pruning tree
using prune
.
Example: Subtrees="all"
Data Types: single
| double
| char
| string
TreeSize
— Tree size
'se'
(default) | 'min'
Tree size, specified as the comma-separated pair consisting of
'TreeSize'
and one of the following values:
'se'
—loss
returns the highest pruning level with loss within one standard deviation of the minimum (L
+se
, whereL
andse
relate to the smallest value inSubtrees
).'min'
—loss
returns the element ofSubtrees
with smallest loss, usually the smallest element ofSubtrees
.
Output Arguments
L
— Classification loss
vector
Classification loss, returned as a vector the length of Subtrees
.
The meaning of the error depends on the values in Weights
and
LossFun
. For more information, see Classification Loss.
se
— Standard error of loss
vector
Standard error of loss, returned as a vector the length of
Subtrees
.
NLeaf
— Number of leaves (terminal nodes) in pruned subtrees
vector
Number of leaves (terminal nodes) in the pruned subtrees, returned as a vector the
length of Subtrees
.
bestlevel
— Best pruning level
scalar
Best pruning level, returned as a scalar whose value depends on
TreeSize
:
TreeSize
='se'
—loss
returns the highest pruning level with loss within one standard deviation of the minimum (L
+se
, whereL
andse
relate to the smallest value inSubtrees
).TreeSize
='min'
—loss
returns the element ofSubtrees
with smallest loss, usually the smallest element ofSubtrees
.
More About
Classification Loss
Classification loss functions measure the predictive inaccuracy of classification models. When you compare the same type of loss among many models, a lower loss indicates a better predictive model.
Consider the following scenario.
L is the weighted average classification loss.
n is the sample size.
For binary classification:
y_{j} is the observed class label. The software codes it as –1 or 1, indicating the negative or positive class (or the first or second class in the
ClassNames
property), respectively.f(X_{j}) is the positive-class classification score for observation (row) j of the predictor data X.
m_{j} = y_{j}f(X_{j}) is the classification score for classifying observation j into the class corresponding to y_{j}. Positive values of m_{j} indicate correct classification and do not contribute much to the average loss. Negative values of m_{j} indicate incorrect classification and contribute significantly to the average loss.
For algorithms that support multiclass classification (that is, K ≥ 3):
y_{j}^{*} is a vector of K – 1 zeros, with 1 in the position corresponding to the true, observed class y_{j}. For example, if the true class of the second observation is the third class and K = 4, then y_{2}^{*} = [
0 0 1 0
]′. The order of the classes corresponds to the order in theClassNames
property of the input model.f(X_{j}) is the length K vector of class scores for observation j of the predictor data X. The order of the scores corresponds to the order of the classes in the
ClassNames
property of the input model.m_{j} = y_{j}^{*}′f(X_{j}). Therefore, m_{j} is the scalar classification score that the model predicts for the true, observed class.
The weight for observation j is w_{j}. The software normalizes the observation weights so that they sum to the corresponding prior class probability stored in the
Prior
property. Therefore,$$\sum _{j=1}^{n}{w}_{j}}=1.$$
Given this scenario, the following table describes the supported loss functions that you can specify by using the LossFun
name-value argument.
Loss Function | Value of LossFun | Equation |
---|---|---|
Binomial deviance | "binodeviance" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{log}\left\{1+\mathrm{exp}\left[-2{m}_{j}\right]\right\}}.$$ |
Observed misclassification cost | "classifcost" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}}{c}_{{y}_{j}{\widehat{y}}_{j}},$$ where $${\widehat{y}}_{j}$$ is the class label corresponding to the class with the maximal score, and $${c}_{{y}_{j}{\widehat{y}}_{j}}$$ is the user-specified cost of classifying an observation into class $${\widehat{y}}_{j}$$ when its true class is y_{j}. |
Misclassified rate in decimal | "classiferror" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}}I\left\{{\widehat{y}}_{j}\ne {y}_{j}\right\},$$ where I{·} is the indicator function. |
Cross-entropy loss | "crossentropy" |
The weighted cross-entropy loss is $$L=-{\displaystyle \sum _{j=1}^{n}\frac{{\tilde{w}}_{j}\mathrm{log}({m}_{j})}{Kn}},$$ where the weights $${\tilde{w}}_{j}$$ are normalized to sum to n instead of 1. |
Exponential loss | "exponential" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{exp}\left(-{m}_{j}\right)}.$$ |
Hinge loss | "hinge" | $$L={\displaystyle \sum}_{j=1}^{n}{w}_{j}\mathrm{max}\left\{0,1-{m}_{j}\right\}.$$ |
Logit loss | "logit" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}\mathrm{log}\left(1+\mathrm{exp}\left(-{m}_{j}\right)\right)}.$$ |
Minimal expected misclassification cost | "mincost" |
The software computes the weighted minimal expected classification cost using this procedure for observations j = 1,...,n.
The weighted average of the minimal expected misclassification cost loss is $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}{c}_{j}}.$$ |
Quadratic loss | "quadratic" | $$L={\displaystyle \sum _{j=1}^{n}{w}_{j}{\left(1-{m}_{j}\right)}^{2}}.$$ |
If you use the default cost matrix (whose element value is 0 for correct classification
and 1 for incorrect classification), then the loss values for
"classifcost"
, "classiferror"
, and
"mincost"
are identical. For a model with a nondefault cost matrix,
the "classifcost"
loss is equivalent to the "mincost"
loss most of the time. These losses can be different if prediction into the class with
maximal posterior probability is different from prediction into the class with minimal
expected cost. Note that "mincost"
is appropriate only if classification
scores are posterior probabilities.
This figure compares the loss functions (except "classifcost"
,
"crossentropy"
, and "mincost"
) over the score
m for one observation. Some functions are normalized to pass through
the point (0,1).
True Misclassification Cost
The true misclassification cost is the cost of classifying an observation into an incorrect class.
You can set the true misclassification cost per class by using the Cost
name-value argument when you create the classifier. Cost(i,j)
is the cost
of classifying an observation into class j
when its true class is
i
. By default, Cost(i,j)=1
if
i~=j
, and Cost(i,j)=0
if i=j
.
In other words, the cost is 0
for correct classification and
1
for incorrect classification.
Expected Misclassification Cost
The expected misclassification cost per observation is an averaged cost of classifying the observation into each class.
Suppose you have Nobs
observations that you want to classify with a trained
classifier, and you have K
classes. You place the observations
into a matrix X
with one observation per row.
The expected cost matrix CE
has size
Nobs
-by-K
. Each row of
CE
contains the expected (average) cost of classifying
the observation into each of the K
classes.
CE(n,k)
is
$$\sum _{i=1}^{K}\widehat{P}\left(i|X(n)\right)C\left(k|i\right)},$$
where:
K is the number of classes.
$$\widehat{P}\left(i|X(n)\right)$$ is the posterior probability of class i for observation X(n).
$$C\left(k|i\right)$$ is the true misclassification cost of classifying an observation as k when its true class is i.
Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Version History
Introduced in R2011a
See Also
loss
| resubEdge
| resubMargin
| resubPredict
| fitctree
Ouvrir l'exemple
Vous possédez une version modifiée de cet exemple. Souhaitez-vous ouvrir cet exemple avec vos modifications ?
Commande MATLAB
Vous avez cliqué sur un lien qui correspond à cette commande MATLAB :
Pour exécuter la commande, saisissez-la dans la fenêtre de commande de MATLAB. Les navigateurs web ne supportent pas les commandes MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)