# simplify

Algebraic simplification

## Syntax

``S = simplify(expr)``
``S = simplify(expr,Name,Value)``

## Description

example

````S = simplify(expr)` performs algebraic simplification of `expr`. If `expr` is a symbolic vector or matrix, this function simplifies each element of `expr`.```

example

````S = simplify(expr,Name,Value)` performs algebraic simplification of `expr` using additional options specified by one or more `Name,Value` pair arguments.```

## Examples

collapse all

Simplify these symbolic expressions:

```syms x a b c S = simplify(sin(x)^2 + cos(x)^2)```
`S = $1$`
`S = simplify(exp(c*log(sqrt(a+b))))`
`S = ${\left(a+b\right)}^{c/2}$`

Call `simplify` for this symbolic matrix. When the input argument is a vector or matrix, `simplify` tries to find a simpler form of each element of the vector or matrix.

```syms x M = [(x^2 + 5*x + 6)/(x + 2), sin(x)*sin(2*x) + cos(x)*cos(2*x); (exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2, sqrt(16)]; S = simplify(M)```
```S =  $\left(\begin{array}{cc}x+3& \mathrm{cos}\left(x\right)\\ \mathrm{sin}\left(x\right)& 4\end{array}\right)$```

Simplify a symbolic expression that contains logarithms and powers. By default, `simplify` does not combine powers and logarithms because combining them is not valid for generic complex values.

```syms x expr = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2); S = simplify(expr)```
`S = $-\left(\mathrm{log}\left(x+1\right)-\mathrm{log}\left({\left(x+1\right)}^{2}\right)\right) \sqrt{{x}^{2}}$`

To apply the simplification rules that allow the `simplify` function to combine powers and logarithms, set `'IgnoreAnalyticConstraints'` to `true`:

`S = simplify(expr,'IgnoreAnalyticConstraints',true)`
`S = $x \mathrm{log}\left(x+1\right)$`

Simplify this expression:

```syms x expr = ((exp(-x*1i)*1i) - (exp(x*1i)*1i))/(exp(-x*1i) + exp(x*1i)); S = simplify(expr)```
```S =  $-\frac{{\mathrm{e}}^{2 x \mathrm{i}} \mathrm{i}-\mathrm{i}}{{\mathrm{e}}^{2 x \mathrm{i}}+1}$```

By default, `simplify` uses one internal simplification step. You can get different, often shorter, simplification results by increasing the number of simplification steps:

`S10 = simplify(expr,'Steps',10)`
```S10 =  $\frac{2 \mathrm{i}}{{\mathrm{e}}^{2 x \mathrm{i}}+1}-\mathrm{i}$```
`S30 = simplify(expr,'Steps',30)`
```S30 =  $\frac{\left(\mathrm{cos}\left(x\right)-\mathrm{sin}\left(x\right) \mathrm{i}\right) \mathrm{i}}{\mathrm{cos}\left(x\right)}-\mathrm{i}$```
`S50 = simplify(expr,'Steps',50)`
`S50 = $\mathrm{tan}\left(x\right)$`

If you are unable to return the desired result, try alternate simplification functions. See Choose Function to Rearrange Expression.

Get equivalent results for a symbolic expression by setting the value of `'All'` to `true`.

```syms x expr = cos(x)^2 - sin(x)^2; S = simplify(expr,'All',true)```
```S =  $\left(\begin{array}{c}\mathrm{cos}\left(2 x\right)\\ {\mathrm{cos}\left(x\right)}^{2}-{\mathrm{sin}\left(x\right)}^{2}\end{array}\right)$```

Increase the number of simplification steps to 10. Find the other equivalent results for the same expression.

`S = simplify(expr,'Steps',10,'All',true)`
```S =  $\left(\begin{array}{c}\mathrm{cos}\left(2 x\right)\\ 1-2 {\mathrm{sin}\left(x\right)}^{2}\\ 2 {\mathrm{cos}\left(x\right)}^{2}-1\\ {\mathrm{cos}\left(x\right)}^{2}-{\mathrm{sin}\left(x\right)}^{2}\\ \mathrm{cot}\left(2 x\right) \mathrm{sin}\left(2 x\right)\\ \frac{{\mathrm{e}}^{-2 x \mathrm{i}}}{2}+\frac{{\mathrm{e}}^{2 x \mathrm{i}}}{2}\end{array}\right)$```

Attempt to separate real and imaginary parts of an expression by setting the value of `'Criterion'` to `'preferReal'`.

```syms x f = (exp(x + exp(-x*1i)/2 - exp(x*1i)/2)*1i)/2 -... (exp(-x - exp(-x*1i)/2 + exp(x*1i)/2)*1i)/2; S = simplify(f,'Criterion','preferReal','Steps',100)```
`S = $\mathrm{sin}\left(\mathrm{sin}\left(x\right)\right) \mathrm{cosh}\left(x\right)+\mathrm{cos}\left(\mathrm{sin}\left(x\right)\right) \mathrm{sinh}\left(x\right) \mathrm{i}$`

If `'Criterion'` is not set to `'preferReal'`, then `simplify` returns a shorter result but the real and imaginary parts are not separated.

`S = simplify(f,'Steps',100)`
`S = $\mathrm{sin}\left(\mathrm{sin}\left(x\right)+x \mathrm{i}\right)$`

When you set `'Criterion'` to `'preferReal'`, the simplifier disfavors expression forms where complex values appear inside subexpressions. In nested subexpressions, the deeper the complex value appears inside an expression, the least preference this form of an expression gets.

Attempt to avoid imaginary terms in exponents by setting `'Criterion'` to `'preferReal'`.

Show this behavior by simplifying a complex symbolic expression with and without setting `'Criterion'` to `'preferReal'`. When `'Criterion'` is set to `'preferReal'`, then `simplify` places the imaginary term outside the exponent.

```expr = sym(1i)^(1i+1); withoutPreferReal = simplify(expr,'Steps',100)```
```withoutPreferReal =  ${\left(-1\right)}^{\frac{1}{2}+\frac{1}{2} \mathrm{i}}$```
`withPreferReal = simplify(expr,'Criterion','preferReal','Steps',100)`
```withPreferReal =  ${\mathrm{e}}^{-\frac{\pi }{2}} \mathrm{i}$```

Simplify expressions containing symbolic units of the same dimension by using `simplify`.

```u = symunit; expr = 300*u.cm + 40*u.inch + 2*u.m; S = simplify(expr)```
```S =  $\frac{3008}{5} \mathrm{cm}\mathrm{"centimeter - a physical unit of length."}$```

`simplify` automatically chooses the unit to rewrite into. To choose a specific unit, use `rewrite`.

In most cases, to simplify a symbolic expression using Symbolic Math Toolbox™, you only need to use the `simplify` function. But for some large and complex expressions, you can obtain a faster and simpler result by using the `expand` function before applying `simplify`.

For instance, this workflow gives better results when finding the determinant of a matrix that represents the Kerr metric . Declare the parameters of the Kerr metric.

```syms theta real; syms r rs a real positive;```

Define the matrix that represents the Kerr metric.

```rho = sqrt(r^2 + a^2*cos(theta)^2); delta = r^2 + a^2 - r*rs; g(1,1) = - (1 - r*rs/rho^2); g(1,4) = - (rs*a*r*sin(theta)^2)/rho^2; g(4,1) = - (rs*a*r*sin(theta)^2)/rho^2; g(2,2) = rho^2/delta; g(3,3) = rho^2; g(4,4) = (r^2 + a^2 + rs*a^2*r*sin(theta)^2/rho^2)*sin(theta)^2;```

Evaluate the determinant of the Kerr metric.

`det_g = det(g)`
```det_g =  $-\frac{{\mathrm{sin}\left(\theta \right)}^{2} \left({a}^{6} {\mathrm{cos}\left(\theta \right)}^{4}+{a}^{4} {r}^{2} {\mathrm{cos}\left(\theta \right)}^{4}+2 {a}^{4} {r}^{2} {\mathrm{cos}\left(\theta \right)}^{2}+\mathrm{rs} {a}^{4} r {\mathrm{cos}\left(\theta \right)}^{2} {\mathrm{sin}\left(\theta \right)}^{2}-\mathrm{rs} {a}^{4} r {\mathrm{cos}\left(\theta \right)}^{2}+2 {a}^{2} {r}^{4} {\mathrm{cos}\left(\theta \right)}^{2}+{a}^{2} {r}^{4}-\mathrm{rs} {a}^{2} {r}^{3} {\mathrm{cos}\left(\theta \right)}^{2}+\mathrm{rs} {a}^{2} {r}^{3} {\mathrm{sin}\left(\theta \right)}^{2}-\mathrm{rs} {a}^{2} {r}^{3}+{r}^{6}-\mathrm{rs} {r}^{5}\right)}{{a}^{2}+{r}^{2}-\mathrm{rs} r}$```

Simplify the determinant using the `simplify` function.

`D = simplify(det_g)`
`D = $-{\mathrm{sin}\left(\theta \right)}^{2} \left({a}^{2} {\mathrm{cos}\left(\theta \right)}^{2}+{r}^{2}\right) \left(-{a}^{2} {\mathrm{sin}\left(\theta \right)}^{2}+{a}^{2}+{r}^{2}\right)$`

Instead, flatten the expression using the `expand` function, and then apply the `simplify` function. The result is simpler with this extra step.

`D = simplify(expand(det_g))`
`D = $-{\mathrm{sin}\left(\theta \right)}^{2} {\left(-{a}^{2} {\mathrm{sin}\left(\theta \right)}^{2}+{a}^{2}+{r}^{2}\right)}^{2}$`

## Input Arguments

collapse all

Input expression, specified as a symbolic expression, function, vector, or matrix.

### Name-Value Arguments

Specify optional pairs of arguments as `Name1=Value1,...,NameN=ValueN`, where `Name` is the argument name and `Value` is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose `Name` in quotes.

Example: `'Seconds',60` limits the simplification process to 60 seconds.

Option to return equivalent results, specified as the comma-separated pair consisting of `'All'` and either of the two logical values. When you use this option, the input argument `expr` must be a scalar.

 `false` Use the default option to return only the final simplification result. `true` Return a column vector of equivalent results for the input expression. You can use this option along with the `'Steps'` option to obtain alternative expressions in the simplification process.

Simplification criterion, specified as the comma-separated pair consisting of `'Criterion'` and one of these character vectors.

 `'default'` Use the default (internal) simplification criteria. `'preferReal'` Favor the forms of `S` containing real values over the forms containing complex values. If any form of `S` contains complex values, the simplifier disfavors the forms where complex values appear inside subexpressions. In case of nested subexpressions, the deeper the complex value appears inside an expression, the least preference this form of an expression gets.

Simplification rules, specified as the comma-separated pair consisting of `'IgnoreAnalyticConstraints'` and one of these values.

 `false` Use strict simplification rules. `simplify` always returns results that are analytically equivalent to the initial expression. `true` Apply purely algebraic simplifications to expressions. Setting `IgnoreAnalyticConstraints` to `true` can give you simpler solutions, which could lead to results not generally valid. In other words, this option applies mathematical identities that are convenient, but the results might not hold for all possible values of the variables. In some cases, the results might not be equivalent to the initial expression. For details, see Algorithms.

Time limit for the simplification process, specified as the comma-separated pair consisting of `'Seconds'` and a positive value that denotes the maximal time in seconds.

Number of simplification steps, specified as the comma-separated pair consisting of `'Steps'` and a positive value that denotes the maximal number of internal simplification steps. Note that increasing the number of simplification steps can slow down your computations.

`simplify(expr,'Steps',n)` is equivalent to `simplify(expr,n)`, where `n` is the number of simplification steps.

## Tips

• Simplification of mathematical expression is not a clearly defined subject. There is no universal idea as to which form of an expression is simplest. The form of a mathematical expression that is simplest for one problem might be complicated or even unsuitable for another problem.

## Algorithms

When you use `IgnoreAnalyticConstraints`, then `simplify` follows some of these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid for all values of a, b, and c:

(ab)c = ab·c.

• If f and g are standard mathematical functions and f(g(x)) = x for all small positive numbers, f(g(x)) = x is assumed to be valid for all complex values of x. In particular:

• log(ex) = x

• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

• Wk(x·ex) = x for all branch indices k of the Lambert W function.

 Zee, A. Einstein Gravity in a Nutshell. Princeton: Princeton University Press, 2013.