besseli
Modified Bessel function of the first kind for symbolic expressions
Syntax
Description
besseli( returns the
modified Bessel function of the first
kind, Iν(z).nu,z)
Examples
Find Modified Bessel Function of First Kind
Compute the modified Bessel functions of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]
ans = 27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i
Compute the modified Bessel functions of the first kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besseli returns
unresolved symbolic calls.
[besseli(sym(0), 5), besseli(sym(-1), 2),... besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]
ans = [ besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]
For symbolic variables and expressions, besseli also returns
unresolved symbolic calls:
syms x y [besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
ans = [ besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
Solve Bessel Differential Equation for Modified Bessel Functions
Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.
syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans = C2*besseli(nu, z) + C3*besselk(nu, z)
Verify that the modified Bessel function of the first kind is a valid solution of the modified Bessel differential equation.
syms nu z isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)... - (z^2 + nu^2)*besseli(nu, z) == 0)
ans = logical 1
Special Values of Modified Bessel Function of First Kind
If the first parameter is an odd integer multiplied by 1/2, besseli
rewrites the Bessel functions in terms of elementary functions:
syms x besseli(1/2, x)
ans = (2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2))
besseli(-1/2, x)
ans = (2^(1/2)*cosh(x))/(x^(1/2)*pi^(1/2))
besseli(-3/2, x)
ans = (2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))
besseli(5/2, x)
ans = -(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 + 1)))/(x^(1/2)*pi^(1/2))
Differentiate Modified Bessel Function of First Kind
Differentiate the expressions involving the modified Bessel functions of the first kind:
syms x y diff(besseli(1, x)) diff(diff(besseli(0, x^2 + x*y -y^2), x), y)
ans = besseli(0, x) - besseli(1, x)/x ans = besseli(1, x^2 + x*y - y^2) +... (2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -... (besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
Bessel Function for Matrix Input
Call besseli for the matrix A and the value 1/2.
The result is a matrix of the modified Bessel functions besseli(1/2,
A(i,j)).
syms x A = [-1, pi; x, 0]; besseli(1/2, A)
ans = [ (2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi] [ (2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2)), 0]
Plot the Modified Bessel Functions of the First Kind
Plot the modified Bessel functions of the first kind for .
syms x y fplot(besseli(0:3, x)) axis([0 4 -0.1 4]) grid on ylabel('I_v(x)') legend('I_0','I_1','I_2','I_3', 'Location','Best') title('Modified Bessel functions of the first kind')

Input Arguments
More About
Tips
Calling
besselifor a number that is not a symbolic object invokes the MATLAB®besselifunction.At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,
besseli(nu,z)expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a