Main Content

max

Maximum elements of symbolic input

Description

example

M = max(A) returns the maximum elements of a symbolic input.

  • If A is a vector, then max(A) returns the maximum of A.

  • If A is a matrix, then max(A) is a row vector containing the maximum value of each column.

For an input A that contains symbolic expression, the symbolic max function returns an unevaluated expression that is reduced by eliminating arguments that do not represent maximum values. The output may have another argument that represents the condition for the symbolic variable. For example, syms x; max([1 x]) returns the output max([1, x], [], 2, 'Omitnan', ~in(x, 'real')) in the Command Window since x is complex.

example

M = max(A,[],nanflag) specifies whether to include or omit NaN values in the calculation. For example, max(A,[],'includenan') includes all NaN values in A while max(A,[],'omitnan') ignores them.

example

M = max(A,[],dim) returns the maximum element along dimension dim. For example, if A is a matrix, then max(A,[],2) is a column vector containing the maximum value of each row.

M = max(A,[],dim,nanflag) also specifies the dimension to operate along when using the nanflag option.

example

M = max(A,[],'all') returns the maximum over all elements of A.

M = max(A,[],'all',nanflag) computes the maximum over all elements of A when using the nanflag option.

example

C = max(A,B) returns an array with the largest elements taken from A or B.

C = max(A,B,nanflag) also specifies how to treat NaN values.

Examples

collapse all

Create a symbolic vector of real elements. Find the largest real element using the symbolic max function.

syms x real
A = [23 42 37 18 x];
M = max(A)
M = max([42,x],[],2,"omitnan",symfalse)

The symbolic max function returns an unevaluated expression. The expression is reduced by eliminating arguments that do not represent maximum values.

Create a symbolic vector and compute its maximum, excluding NaN values.

syms x positive
A = [1.75 x 3.25 -2.5 NaN 0.5 NaN 0.2 -4*x];
M = max(A,[],'omitnan')
M = 

max([134,x],[],2,"omitnan",symfalse)

max(A) will also produce this result since 'omitnan' is the default option.

Use the 'includenan' flag to return NaN.

M = max(A,[],'includenan')
M = NaNsym(NaN)

Create a symbolic matrix and find the largest element in each column.

syms x real
A = [1 x -0.5; -2 2 x]
A = 

(1x-12-22x)[sym(1), x, -sym(1/2); -sym(2), sym(2), x]

M = max(A)
M = 

(1max([2,x],[],2,"omitnan",symfalse)max([-12,x],[],2,"omitnan",symfalse))

Create a symbolic matrix and find the largest element in each row.

syms x real
A = [1 x -0.5; -2 2 x]
A = 

(1x-12-22x)[sym(1), x, -sym(1/2); -sym(2), sym(2), x]

M = max(A,[],2)
M = 

(max([1,x],[],2,"omitnan",symfalse)max([2,x],[],2,"omitnan",symfalse))

Create a symbolic matrix.

syms x real
A = [1 x -0.5; -2 2 x]
A = 

(1x-12-22x)[sym(1), x, -sym(1/2); -sym(2), sym(2), x]

To find the maximum over all dimensions of a matrix, use the 'all' option.

M = max(A,[],'all')
M = max([2,x],[],2,"omitnan",symfalse)

Create two symbolic matrices with complex elements. Find the largest elements taken from the two matrices, which are complex values with the largest magnitude.

syms x y
A = [x 2+1i; 3 4i; -5 y]
A = 

(x2+i34i-5y)[x, 2 + sym(1i); sym(3), sym('4i'); -sym(5), y]

B = [1 y; 2i 1+1i; -3 x]
B = 

(1y2i1+i-3x)[sym(1), y; sym('2i'), 1 + sym(1i); -sym(3), x]

C = max(A,B)
C = 

(max([1,x],[],2,"omitnan",xR)max([2+i,y],[],2,"omitnan",symtrue)34i-5max([x,y],[],2,"omitnan",xRyR))

Define the following expression by using the symbolic max function. Assume that the variable x is real.

f(x)={x-1x>10x<1

syms x real
f(x) = sqrt(max(x,1) - 1)
f(x) = max([1,x],[],2,"omitnan",symfalse)-1

Plot the expression by using fplot.

fplot(f,[-5 5])

Figure contains an axes. The axes contains an object of type functionline.

Input Arguments

collapse all

Input array, specified as a symbolic expression, vector, or matrix of symbolic expressions.

  • If A is complex, then max(A) returns the complex value with the largest magnitude. If magnitudes are equal, then max(A) returns the value with the largest magnitude and the largest phase angle.

  • If A is a scalar, then max(A) returns A.

  • If A is a 0-by-0 empty array, then max(A) is an empty array as well.

Data Types: sym | single | double
Complex Number Support: Yes

NaN condition, specified as one of these values:

  • 'omitnan' — Ignore all NaN values in the input. If all elements are NaN, then max returns the first one.

  • 'includenan' — Include the NaN values in the input for the calculation.

Data Types: char

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(M,dim) is 1, while the sizes of all other dimensions remain the same, unless size(A,dim) is 0. If size(A,dim) is 0, then max(A,dim) returns an empty array with the same size as A.

Consider a two-dimensional input array, A:

  • If dim = 1, then max(A,[],1) returns a row vector containing the smallest element in each column.

  • If dim = 2, then max(A,[],2) returns a column vector containing the smallest element in each row.

max returns A if dim is greater than ndims(A).

Additional input array, specified as a symbolic expression, vector, or matrix of symbolic expressions. Inputs A and B must either be the same size or have sizes that are compatible (for example, A is an M-by-N matrix and B is a scalar or 1-by-N row vector). For more information, see Compatible Array Sizes for Basic Operations.

Data Types: sym | single | double
Complex Number Support: Yes

Output Arguments

collapse all

Maximum values, returned as a symbolic expression, vector, or matrix of symbolic expressions. size(M,dim) is 1, while the sizes of all other dimensions match the size of the corresponding dimension in A, unless size(A,dim) is 0. If size(A,dim) is 0, then M is an empty array with the same size as A.

Maximum elements from A or B, returned as a symbolic expression, vector, or matrix of symbolic expressions. The size of C is determined by implicit expansion of the dimensions of A and B. For more information, see Compatible Array Sizes for Basic Operations.

See Also

|

Introduced in R2021a