# minus

Laurent polynomial or Laurent matrix subtraction

Since R2021b

## Description

example

Q = minus(A,B) subtracts B from A, where A and B are a pair of Laurent polynomials or Laurent matrices.

Note

The laurentPolynomial and laurentMatrix objects have their own versions of minus. The input data type determines which version is executed.

Q = A - B is equivalent to Q = minus(A,B).

## Examples

collapse all

Create two Laurent polynomials:

• $a\left(z\right)=2z$

• $b\left(z\right)=8{z}^{3}+4{z}^{2}+2z+1$

a = laurentPolynomial(Coefficients=[2],MaxOrder=1);
b = laurentPolynomial(Coefficients=[8 4 2 1],MaxOrder=3);

Subtract $a\left(z\right)$ from $b\left(z\right)$.

c = minus(b,a)
c =
laurentPolynomial with properties:

Coefficients: [8 4 0 1]
MaxOrder: 3

Subtract ${a}^{3}\left(z\right)+{a}^{2}\left(z\right)$ from $b\left(z\right)$.

d = b-(mpower(a,3)+mpower(a,2))
d =
laurentPolynomial with properties:

Coefficients: [2 1]
MaxOrder: 1

Create the Laurent polynomials:

• $a\left(z\right)=5{z}^{2}+8z+3$

• $b\left(z\right)=8z+3+2{z}^{-1}$

lpA = laurentPolynomial(Coefficients=[5 8 3],MaxOrder=2);
lpB = laurentPolynomial(Coefficients=[8 3 2],MaxOrder=1);

Create the Laurent matrices:

• lmatA = $\left[\begin{array}{cc}\mathit{a}\left(\mathit{z}\right)& 2\\ 4& 6\end{array}\right]$

• lmatB = $\left[\begin{array}{cc}\mathit{b}\left(\mathit{z}\right)& 1\\ 3& 5\end{array}\right]$

lmatA = laurentMatrix(Elements={lpA,2;4,6});
lmatB = laurentMatrix(Elements={lpB,1;3,5});

Subtract lmatB from lmatA.

lmatC = lmatA-lmatB;
lmatC.Elements{1,1}
ans =
laurentPolynomial with properties:

Coefficients: [5 0 0 -2]
MaxOrder: 2

lmatC.Elements{1,2}
ans =
laurentPolynomial with properties:

Coefficients: 1
MaxOrder: 0

lmatC.Elements{2,1}
ans =
laurentPolynomial with properties:

Coefficients: 1
MaxOrder: 0

lmatC.Elements{2,2}
ans =
laurentPolynomial with properties:

Coefficients: 1
MaxOrder: 0

## Input Arguments

collapse all

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a laurentMatrix object, respectively.

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a laurentMatrix object, respectively.

## Output Arguments

collapse all

Difference of two Laurent polynomials or two Laurent matrices, returned as a laurentPolynomial object or a laurentMatrix object.

## Version History

Introduced in R2021b