Double precision limit with norm
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I wrote a Taylor series approach for calculating the natural logarithm of matrix A. When I compared my result with the built-in function logm ( norm(myResult-logm(A),2) ), I got the following: 1.3878e-016. However eps = 2^(-52) = 2.2204e-016 when we use double precision. How can MATLAB determine this value if its maximum precision is lower than the result? Is it a bug? (The estimated norm with normest is 1.9626e-016.)
0 commentaires
Réponse acceptée
Matt J
le 29 Oct 2013
Modifié(e) : Matt J
le 29 Oct 2013
eps() gives a relative precision limit.
>> eps(1)
ans =
2.2204e-16
>> eps(.001)
ans =
2.1684e-19
Presumably your logm(A) have values much less than 1. You should really be comparing to eps(logm(A)) or maybe to eps(norm(logm(A)).
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!