Pattern Recognition with Perceptron

5 vues (au cours des 30 derniers jours)
yaqdee frarie
yaqdee frarie le 11 Nov 2013
Hi, all
I have six patterns as shown below
A1 = [ -1 -1 1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1;
1 1 1 -1 1 1 1];
B1 = [ 1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 1];
C1 = [ -1 -1 1 1 1 1 1 ;
-1 1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
-1 1 -1 -1 -1 -1 1;
-1 -1 1 1 1 1 -1];
A2 = [ -1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 -1 1 -1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 -1 1 -1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 1 1 1 1 -1;
-1 1 -1 -1 -1 1 -1;
-1 1 -1 -1 -1 1 -1];
B2 = [ 1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 1;
1 1 1 1 1 1 -1];
C2 = [ -1 -1 1 1 1 -1 -1;
-1 1 -1 -1 -1 1 -1;
1 -1 -1 -1 -1 -1 1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 -1;
1 -1 -1 -1 -1 -1 1;
-1 1 -1 -1 -1 1 -1;
-1 -1 1 1 1 -1 -1];
I have to recognize these patterns with artificial neural network.
I am new in Matlab. Please help!
I need to divide this data into 2 groups.
The first group A1, B1, C1 as training data. The second group A2, B2, C2 used to validate/test the network.
Example : if I select A1 then the output must display 'A', if I select B1 then the output must display 'B', if I select A2 then the output must display 'A'.
. . # # . . .
. . . # . . .
. . . # . . .
. . # . # . .
. . # . # . . => This pattern should be recognized as A
. # # # # # .
. # . . . # .
. # . . . # .
# # # . # # #
In result program, we must explain how to get that. it mean we must explain epochs from start to finish. And Learning Rate = 1 And Threshold Value = 0.5
How do I do that?
Thanks in advance!
Network type is perceptron
  2 commentaires
Greg Heath
Greg Heath le 13 Nov 2013
Hmm, I submitted an answer to this. Must have made a mistake. Sorry, cannot get back to it until later.
Bottom line was you need a huge amount of input variable reduction.
Greg
anjanaa subramaniam
anjanaa subramaniam le 19 Oct 2020
Please help with this code

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by