How do I remove background noise from a sound wave?
46 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
David Koenig
le 17 Nov 2013
Réponse apportée : pravin m
le 5 Nov 2019
I have a sound wave y(1:441000) gathered using a microphone and I have background n(1:441000) also gathered by the microphone. I have tried removing the background noise using a script something like:
Y=fft(y);
N=fft(n);
Yclean=Y-N;
yClean=ifft(Yclean);
However, yClean is not correct and is backwards in time. Do you have any suggestions?
Thanks,
Dave
0 commentaires
Réponse acceptée
Pedro Villena
le 18 Nov 2013
Create and Implement LMS Adaptive Filter to remove the filtered noise from desired signal
mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
%Get input vector to filter
for k= 1:filterLength
if ((n-k)>0)
input(k) = noise(n-k+1);
end
end
output(n) = weights * input'; %Output of Adaptive Filter
err(n) = mtlb_noisy(n) - output(n); %Error Computation
weights = weights + step_size * err(n) * input; %Weights Updating
end
yClean = err;
1 commentaire
Tahira Batool
le 30 Avr 2017
And what if one does not have a separate noisy signal to be removed from an original signal ,then how can we remove background noise from a signal?
Plus de réponses (3)
Umair Nadeem
le 18 Nov 2013
It would be easier if you could upload the noisy signal too. Save the variable y which supposedly has the noisy signal in a .mat file using save command and attach it with your post. Some frequency analysis could be done if the signal is available.
Also try to provide info about the signal frequency (if known), and the sampling frequency which you used to sample the data.
0 commentaires
pinreddy chaitanya
le 22 Oct 2018
Modifié(e) : Walter Roberson
le 22 Oct 2018
weights = weights + step_size * err(n) * input; %Weights Updating
what is the use of this line
1 commentaire
pravin m
le 5 Nov 2019
mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
%Get input vector to filter
for k= 1:filterLength
if ((n-k)>0)
input(k) = noise(n-k+1);
end
end
output(n) = weights * input'; %Output of Adaptive Filter
err(n) = mtlb_noisy(n) - output(n); %Error Computation
weights = weights + step_size * err(n) * input; %Weights Updating
end
yClean = err;
0 commentaires
Voir également
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!