Linear Regression and Curve Fitting
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a model and some data I'd like to fit to it: X_t = B1*cos(2*pi*omega*t) + B2*sin(2*pi*omega*t) + eta_t
What function would I use to conduct linear regression here, to find B1 and B2?
0 commentaires
Réponse acceptée
Wayne King
le 4 Déc 2013
Modifié(e) : Wayne King
le 4 Déc 2013
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
beta(1) is the estimate of the constant term, beta(2) the estimate of B1 and beta(3) the estimate of B2.
If you set the random number generator to its default for reproducible results:
rng default
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
The results are:
beta =
-0.0326
1.5284
0.4643
pretty good.
2 commentaires
Wayne King
le 4 Déc 2013
Yes, that's correct. Make sure you flip it to a column vector if it isn't already. Obviously you have to change the frequencies in the design matrix to suit your problem.
If you are trying to estimate other frequencies you need to add two columns to the design matrix per frequency --- one for cosine and one for sine
Plus de réponses (1)
Jos (10584)
le 4 Déc 2013
You might be interested in the function REGRESS
X = [cos(2*pi*omega*t(:)) sin(2*pi*omega*t(:))]
B = regress(Y,X)
If you want to specify an offset B(3), add a column of ones to X
X(:,3) = 1
0 commentaires
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!