Plot autocorrelation and power spectrum
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi..i'm a beginner in using Matlab. I'm currently trying to generate a Gaussian random numbers, then use it as an input to a low pass filter, cut-off frequency 1000Hz. I have the random number generated as: : f = randn(1000,1) * sqrt(2) + 0; I'd like to ask how can i proceed from here to calculate and plot the autocorrelation and power spectrum at input/output of the filter.
0 commentaires
Réponse acceptée
Wayne King
le 15 Déc 2013
If you have the Signal Processing Toolbox, simply use xcorr() and periodogram()
x = sqrt(2)*randn(1000,1);
Numlags = 50;
[xc,lags] = xcorr(x,Numlags,'coeff');
stem(lags(51:end),xc(51:end))
% power spectrum
Fs = 1; % sampling frequency
[Pxx,F] = periodogram(x,[],length(x),Fs);
figure;
plot(F,10*log10(Pxx))
4 commentaires
Wayne King
le 16 Déc 2013
You need more information than that. You need to know minimally the sampling frequency.
Plus de réponses (1)
Wayne King
le 16 Déc 2013
It depends on what you have exported. If you exported a filter object -- I'll assume this.
Let Hd be your filter object
x = randn(1000,1); % white noise input 1,000 samples in length
y = filter(Hd,x);
Voir également
Catégories
En savoir plus sur Filter Design dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

