Help me about matrix in Matlab ?

5 vues (au cours des 30 derniers jours)
Nguyen Trong Nhan
Nguyen Trong Nhan le 30 Déc 2013
Give a square matrix A. For k is positive integer. Find k that A^k = 0. (I'm Vietnamese, I don't know How to call k in English). Could you please help me write the code to find k.
Thanks you very much.
  4 commentaires
Image Analyst
Image Analyst le 30 Déc 2013
You said "Give a square matrix A". Well how about if I give you an A that is all zeros?
Walter Roberson
Walter Roberson le 30 Déc 2013
Roger, it can happen in floating point arithmetic, though not algebraically. For example,
diag(rand(1,5))
raised to a large enough power will underflow to all 0's.
For example,
A = diag([0.757740130578333, 0.743132468124916, 0.392227019534168, 0.655477890177557, 0.171186687811562]);
is last non-zero at A^2685

Connectez-vous pour commenter.

Réponse acceptée

Walter Roberson
Walter Roberson le 30 Déc 2013
There is in general no solution for this. If you do a singular value decomposition
[U,S,V] = svd(A);
then A = U * S * V' where S is a diagonal matrix, and A^k = U * S^k * V' . Then, A^k can only go to zero if S^k goes to 0. Algebraically that requires that the matrix be singular in the first place. In floating point arithmetic, it would require that the diagonal of the diagonal matrix S be all in (-1,+1) (exclusive on both ends) and then k would be the point at which the diagonal elements underflowed to 0. As the non-zero diagonal S entries of SVD are the square roots of the eigenvalues of A, this in turn requires that the eigenvalues are all strictly in the range (0,1) -- which is certainly not true for general matrices A.
  1 commentaire
Roger Stafford
Roger Stafford le 30 Déc 2013
Modifié(e) : Roger Stafford le 30 Déc 2013
No, that isn't true for 'svd' in general, Walter. It does hold true for 'eig' when it can obtain a complete set of orthogonal eigenvectors and eigenvalues.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by