finding common elements in a matrix
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I believe there should be a simple answer but I could not get it myself.
Assume there is a matrix say A =
1.3693 1.6266
0.2054 1.3820
1.4125 0.4844
0.0734 0.7480
1.0499 1.0451
There is one more matrix
B =
1.3693 2.0920
1.9255 1.3820
1.4125 1.8541
0.0734 1.4454
1.0499 1.4112
Now, How do I find common elements in every row of these two matrices?? I must get a final coloumn vector of only the 'common element' of every row of these two matrices.
Any quick reply is highly appreciated
3 commentaires
Matt J
le 8 Jan 2014
Also, will the "common element" be exactly equal in both A and B or do you need to worry about floating point errors?
Réponse acceptée
Jos (10584)
le 8 Jan 2014
I have to make a few assumptions as your question and comments are not clear.
Case A - assumptions: (1) exactly one common element per row (2) in the same column in A and B
tf = abs(A-B) < tol
C = A(tf)
Case B - assumptions: (1) exactly one common element per row (2) that element may be at different columns between A and B
tf = abs(A-B) < tol || abs(fliplr(A)-B) < tol
C = A(tf)
Case C - assumptions: (1) zero or one common element per row (2) in the same column in A and B
tf = abs(A-B) < tol
[r,c] = find(tf)
C = zeros(size(A,1),1)
C(r) = A(tf)
Case D - Assumptions: (1) zero or one common element per row (2) that element may be at different columns between A and B
...
5 commentaires
Salar
le 25 Fév 2016
Modifié(e) : Salar
le 25 Fév 2016
And also to be honest, I think this code doesn't do the work see :
a =
90 50
20 11
0 87
11 110
>> b= [ 41 90; 11 31;87 0; 11 -2]
b =
41 90
11 31
87 1
11 -2
>> tf = abs(a-b) < 1e-1 | abs(fliplr(a)-b) < 1e-1; >> LambdaS = a(tf)
LambdaS =
20
0
11
50
87
The output that I need to get is
LambdaS : 90 11 87 11
Plus de réponses (2)
Patrik Ek
le 8 Jan 2014
Modifié(e) : Patrik Ek
le 8 Jan 2014
You may use the function ismember. The syntax is
[member,ind] = ismember(A,B);
The first output shows which elements in A that belongs to B and the second output shows at which linear index in B it appears. Then it would be easy to determine at which row it appears since the element numbering in a matrix in matlab is columnwise. The row should just be
rows = mod(ind,nrows);
rows(rows==0 && ind>0) = nrows;
This may however not result in a column vector unless there are exactly 1 common index per row.
BR Patrik
3 commentaires
Patrik Ek
le 8 Jan 2014
Modifié(e) : Patrik Ek
le 8 Jan 2014
That would work I guess, but it is also possible to do a round of on A and B eg,
A = round(10*A)/10; (one decimal)
and analouge on B. Where 10 is here 1/tol. This will work for any tolerance.
A = round(1/tol*A)*tol;
However, this is more like a truncation. It truncates the values in A to a value that is a multiple of 1/tol.
Salar
le 25 Fév 2016
Hello,
What are we supped to put for "nrows" ? when I use your code as it is it says undefined function "nrows" and when I plug in my number of rows for it the matrix rows that I get is just not correct. thanks
David Sanchez
le 8 Jan 2014
A = [ 1.3693 1.6266;
0.2054 1.3820;
1.4125 0.4844;
0.0734 0.7480;
1.0499 1.0451];
B = [1.3693 2.0920;
1.9255 1.3820;
1.4125 1.8541;
0.0734 1.4454;
1.0499 1.4112];
C=(A==B);
D=A.*C;
E=sum(D,2);
E =
1.3693
1.3820
1.4125
0.0734
1.0499
% single line code
E2 = sum(A.*(A==B),2);
E2 =
1.3693
1.3820
1.4125
0.0734
1.0499
3 commentaires
Patrik Ek
le 8 Jan 2014
This code snippet does only consider elements that has the exact location. It will not react on for example,
A = [1 2;
3 4];
B = [2 1;
4 3];
Which will yield a vector,
E = [0;
0];
Also this is also requires that each row has exactly one common value.
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!