Using RK4 numerically rather than using an ODE solver

2 vues (au cours des 30 derniers jours)
KayLynn
KayLynn le 8 Fév 2014
Modifié(e) : darova le 26 Mai 2020
Use the 4th order Runge-Kutta (RK4) method with a step size of h = 0.1 and h=0.001 to find approximate values at t = 0.1, 0.2, …. to 5.0
I have the following code set up for this problem: function rungekutta
%Define initial values of h, t and y h = 0.1; t = 0; y = 1;
fprintf(Step 0: t = %12.8f, w = %12.8f\n’, t, w);
%Write for loop
for i=1:5
k1 = h*f(t,y);
k2 = h*f(t+h/2, y+k1/2);
k3 = h*f(t+h/2, y+k2/2);
k4 = h*f(t+h, y+k3);
y = y + (k1+2*k2+2*k3+k4)/6;
t = t + h;
fprintf(Step %d: t = %6.4f, w = %18.15f\n’, i, t, w); end
%%%%%%%%%%%%%%%%%%
function v = f(t,y)
v = y'= 2-e^-4*t-2*y;;
My t values range from 0 to 5 with step sizes of (0.1) and then another step size of (0.001). I am not sure how to fix the fprintf portion. Any help is appreciated.
Trying to follow the code found below on a website soruce: function rungekutta
h = 0.5;
t = 0;
w = 0.5;
fprintf(Step 0: t = %12.8f, w = %12.8f\n’, t, w);
for i=1:4
k1 = h*f(t,w);
k2 = h*f(t+h/2, w+k1/2);
k3 = h*f(t+h/2, w+k2/2);
k4 = h*f(t+h, w+k3);
w = w + (k1+2*k2+2*k3+k4)/6;
t = t + h;
fprintf(Step %d: t = %6.4f, w = %18.15f\n’, i, t, w); end %%%%%%%%%%%%%%%%%%
function v = f(t,y)
v = y-tˆ2+1;

Réponse acceptée

Amit
Amit le 8 Fév 2014
f = @(t,y) (2 - exp(-4*t) - 2*y);
h = 0.1; % Define Step Size
t_final = 5;
t = 0:h:t_final;
y = zeros(1,numel(t));
y(1) = 1; % y0
% You know the value a t = 0, thats why you'll state with t = h i.e. i = 2
for i = 2:numel(t)
k1 = h*f(t(i-1),y(i-1));
k2 = h*f(t(i-1)+h/2, y(i-1)+k1/2);
k3 = h*f(t(i-1)+h/2, y(i-1)+k2/2);
k4 = h*f(t(i-1)+h, y(i-1)+k3);
y(i) = y(i-1) + (k1+2*k2+2*k3+k4)/6;
disp([t(i) y(i)]);
end
  1 commentaire
KayLynn
KayLynn le 8 Fév 2014
Thank you. I thought it was similiar but wasnt quite sure if the set up was generally the same since more variables have been added. You have been a great help today

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by