About parameters for NARX
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi all:
I have built a NARX with 2 time-series as inputs. I have seen that changing Number of Neurons and Number of Delays, accuracy changes from time to time (sometimes for better, sometimes for worst). Instead of trial & error approach, is there a way to estimate/to start with a good combination of Delays v/s Number of Neurones in order to improve the accuracy of the network?. Thanks for your suggestions.
Best regards.
0 commentaires
Réponse acceptée
Greg Heath
le 19 Fév 2014
FD: Find the significant delays in the autocorrelation function of the target
ID: Find the significant delays in the cross-correlation function of the input and target.
Search for some of my example code
greg nncorr thresh95
Hope this helps.
Thank you for formally accepting my answer
Greg
2 commentaires
Greg Heath
le 24 Fév 2014
Yes. You will get 6 sequences of significant lags; 5 for ID and one for FD. However, you also have the magnitudes of those correlations. So, if your inputs and target are standardized (zero-mean/unit-variance), you can make a reasonable choice of which ones to keep. But remember that the sequence of ID lags you choose will be applied to all of inputs.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!