How to make and sum up a matrix with upper diagonal direction without for-loop condition [The fastest way!]
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
A = [1 7 13 0 0 0 0 0 ; 2 8 14 0 0 0 0 0; 3 9 15 0 0 0 0 0 ; 4 10 16 0 0 0 0 0; 5 11 17 0 0 0 0 0; 6 12 18 0 0 0 0 0];
A =
1 7 13 0 0 0 0 0
2 8 14 0 0 0 0 0
3 9 15 0 0 0 0 0
4 10 16 0 0 0 0 0
5 11 17 0 0 0 0 0
6 12 18 0 0 0 0 0
B = [1 7 13 0 0 0 0 0 ; 0 2 8 14 0 0 0 0; 0 0 3 9 15 0 0 0; 0 0 0 4 10 16 0 0; 0 0 0 0 5 11 17 0; 0 0 0 0 0 6 12 18];
B=
1 7 13 0 0 0 0 0
0 2 8 14 0 0 0 0
0 0 3 9 15 0 0 0
0 0 0 4 10 16 0 0
0 0 0 0 5 11 17 0
0 0 0 0 0 6 12 18
How to make the B matrix with the fastest way? After making the B matrix, I will column-wisely sum up the B matrix using "sum" function. This process should be fast due to I am going to do 100 times of this processing with the 100 by 300000 matrix.
Please help me out!
0 commentaires
Réponse acceptée
Patrik Ek
le 1 Avr 2014
Modifié(e) : Patrik Ek
le 1 Avr 2014
This is a fully vectorized operation. And it should be quite efficient. Requires making 2 matrices however.
a = [1 2 0 0;3 4 0 0;5 6 0 0]
vertind = mod(find(a)-1,size(a,1))+1;
aind = find(a);
b = aind+(vertind-1)*size(a,1);
z = zeros(size(a));
z(b) = a(aind)
thesum = sum(b)
The operation on a matrix of your size (100x300000) take 0.1 seconds per iteration (creation of a excluded) and the maximal memory consumption (a included) is ~twice the size of a. The catch is that this does not allow values to go from end to 1, but that can be fixed, by some thinking. The method is based on the way create matrix indice, so to say columnwise. so in a 4x3 matrix element (2,1) have index 5.
The solution is 9 times slower than the one supported by Dishant Arora, but that solution does not return the B matrix.
Plus de réponses (3)
Dishant Arora
le 1 Avr 2014
C = mat2cell(A, ones(1, size(A,1)), size(A,2));
ii = mat2cell(0:size(A,1)-1, 1, ones(1,size(A,1)))';
B = cellfun(@(x,y) circshift(x,[1,y]), C, ii, 'Un', 0);
B = cell2mat(B)
0 commentaires
lvn
le 1 Avr 2014
Here is one way, which avoids making the B matrix (it directly gives the sum you want, so should be faster on large matrices)
A = [1 7 13 0 0 0 0 0 ; 2 8 14 0 0 0 0 0; 3 9 15 0 0 0 0 0 ; 4 10 16 0 0 0 0 0; 5 11 17 0 0 0 0 0; 6 12 18 0 0 0 0 0];
B = [1 7 13 0 0 0 0 0 ; 0 2 8 14 0 0 0 0; 0 0 3 9 15 0 0 0; 0 0 0 4 10 16 0 0; 0 0 0 0 5 11 17 0; 0 0 0 0 0 6 12 18];
[nrrows,~]=size(A);
C=zeros(1,nrrows+2);
for r=1:nrrows+2
columncounter=max(0,r-nrrows);
for rowcounter=min(r,nrrows):-1:max(1,r-2)
columncounter=columncounter+1;
C(r)=C(r)+A(rowcounter,columncounter);
end
end
C
sum(B)
C =
1 9 24 27 30 33 29 18
ans =
1 9 24 27 30 33 29 18
0 commentaires
Andrei Bobrov
le 1 Avr 2014
Modifié(e) : Andrei Bobrov
le 2 Avr 2014
[m,n] = size(A);
B = spdiags(A,0:n-1,m,n);
ADD other way
[m,n] = size(A);
B = zeros(size(A));
ii = reshape(find(A),m,[]);
B(bsxfun(@plus,ii,(0:n-size(ii,2))'*m)) = ii;
or
m = size(A);
n = 3;
[ii,jj] = ndgrid(1:m(1),1:n);
B = zeros(m);
B(sub2ind(m,ii,bsxfun(@plus,jj,(0:m(1)-1)'))) = A(1:m(1),1:n);
2 commentaires
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!