Is this a Correct implementation for K-Nearest Neighbors algorithm ?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I implemented K-Nearest Neighbours algorithm, but my experience using matlab is very few. I need you to check the small portion of code and tell me what can be improved or modified ? and hope it is a correct implementation of the algorithm ?
function test_data = knn(test_data, tr_data,k)
numoftestdata = size(test_data,1);
numoftrainingdata = size(tr_data,1);
for sample=1:numoftestdata
%Step 1: Computing euclidean distance for each testdata
R = repmat(test_data(sample,:),numoftrainingdata,1) ;
euclideandistance = (R(:,1) - tr_data(:,1)).^2;
%Step 2: compute k nearest neighbors and store them in an array
[dist position] = sort(euclideandistance,'ascend');
knearestneighbors=position(1:k);
knearestdistances=dist(1:k);
% Step 3 : Voting
for i=1:k
A(i) = tr_data(knearestneighbors(i),2);
end
M = mode(A);
if (M~=1)
test_data(sample,2) = mode(A);
else
test_data(sample,2) = tr_data(knearestneighbors(1),2);
end
end
To test it you can use :
- test_data = [6,0; 2,0; 5,0]
- tr_data = [1,1;0,2;3,2; 4,4; 5,3]
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!