Initial conditions on ODE45 ?
16 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Im trying to solve this IVP: e^y +(t*e^y - sin(y))*(dy/dt)=0 with the initial condition y(2)=1.5.
I was just not sure how to do it with the initial condition with Y(2)=1.5, iknow how to do it if it were y(0)=1.5:
f= @(t,y) (exp(y)+(t.*exp(y)-sin(y))); % This is the function.
[t,y]=ode45(f, [0.5,4], 1.5); % trange is from 0.5 to 4
plot(t,y)
can someone please help me out?
0 commentaires
Réponse acceptée
Jan
le 30 Juil 2011
This uses the initial value y(0.5)=1.5 ( not y(0)=1.5):
[t, y] = ode45(f, [0.5, 4], 1.5);
So for y(2)=1.5:
[t, y] = ode45(f, [2, 4], 1.5);
Note: The initial value problem starts at the inital point.
[EDITED]: The call to ODE45 is equivalent, if the problem is formulated in backward direction - an "final value problem": tspan is still [ti, tf], but now ti > tf.
9 commentaires
Pasindu Ranasinghe
le 22 Juil 2021
Example Code

Use ode45() to find the approximate values of the solution at t in the range of 1 to 3
function ydot = eqns(t,y)
ydot=(t-exp(-t))/(y+exp(y));
end
###################################
%%Code
[t1,y1]=ode45(@eqns,[1.5 1], 0.5);
hold on;
[t2,y2]=ode45(@eqns,[1.5 3], 0.5);
hold off
t=[t1;t2];
y=[y1;y2];
plot(t,y,'-o')
Plus de réponses (1)
Subha Fernando
le 26 Oct 2011
let say function is dy/dt = y (t-y).
If initial condition is given at y(1) = 0.5 not at y(0) then we define the RHS as
function output = funcRHS(t, y) output = y *(t-y); end
%then u can call
hold on ode45('funcRHS', [1, -1], 0.5) ode45('funcRHS', [1,5], 0.5)
%Here you can see and read the initial value at y(0) also
0 commentaires
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!