Solving the scaling problem.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
So I have a problem with finding out scaling. I have a vector x1 and a vector x2. I suspect that some elements of x2 might be scaled versions of x1.
I need to see if they are indeed scaled.
so A.x1 = x2, and I need to solve A = x1^-1.x2.
Any ideas how to implement that?
0 commentaires
Réponse acceptée
Matt Fig
le 14 Fév 2011
If
A = [a 0;0 b] % a and b unknowns
Ax = y % The governing relation between known col vects x and y.
then
A = diag(y./x)
0 commentaires
Plus de réponses (2)
Matt Tearle
le 14 Fév 2011
If it's just two vectors then you could do
A = x2(1)/x1(1)
norm(A*x1 - x2)
A slightly more generalizable way is
A = x1\x2
norm(A*x1 - x2)
Check to see if the result is on the order of machine roundoff.
2 commentaires
Doug Hull
le 14 Fév 2011
Abhilash said: "Thanks! I tried that, but it doesn't really solve my purpose.
Here's a link form Wiki...this is actually what I need to implement -
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Examples_in_the_plane
Unequal scaling is the one I'm looking at."
Matt Tearle
le 14 Fév 2011
OK, in that case, Matt Fig's answer is the simplest (A = diag(x2./x1))... but I'm confused by the use of the words "I suspect", "might be", and "if they are indeed scaled". Two vectors will always be related by such an unequal scaling (unless elements of x1 are zero).
Voir également
Catégories
En savoir plus sur Mathematics and Optimization dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!