Create The Image Laplacian Matrix Effectively
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
I want to build the Spatial Laplacian of a given operation on an image.
The Matrix is given by:
The matrix Dx / Dy is the forward difference operator -> Hence its transpose is the backward difference operator.
The matrix Ax / Ay is diagonal matrix with weights which are function of the gradient of the image.
It is defined by:
Where Ix(i) is the horizontal gradient of the input image at the i-th pixel.
As said above Ax(i, j) = 0, i ~= j.
It is the same for Ay with the direction modification.
Assuming input Image G -> g = vec(G) = G(:).
I want to find and image U -> u = vec(U) = U(:) s.t.:
How can I solve it most efficiently in MATLAB?
How should I build the sparse Matrices?
Thank You.
2 commentaires
Matt J
le 4 Juin 2014
It looks like deconvreg in the Image Processing Toolbox does the above (or something similar), but without linear algebraic methods, probably.
Réponse acceptée
Matt J
le 3 Juin 2014
[M,N]=size(inputImage);
g=inputImage(:);
Dx=diff(speye(N),1,1);
Dx=kron(Dx,speye(M));
Dy=diff(speye(M),1,1);
Dy=kron(speye(N),Dy);
sp=@(V) spdiags(V(:),0,numel(V),numel(V));
Ax=sp(Dx*g);
Ay=sp(Dy*g);
Lg=Dx.'*Ax*Dx + Dy.'*Ay*Dy;
u=(speye(size(Lg))+lambda*Lg)\g;
2 commentaires
Matt J
le 3 Juin 2014
Hi Royi,
- Yes, probably.
- Ax=sp(exp(-(Dx*g)/2/alpha^2)). Or implement Dx*g using diff() as you mentioned.
Plus de réponses (0)
Voir également
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!