How to fit data to a second degree polynomial equation with 9 co-efficients

6 vues (au cours des 30 derniers jours)
Hello,
I have data for one independent variable and one dependent variable. I need to fit this data to a 9 coefficient second degree polynomial equation.
My equation is of the form Y = [A + Bx + C(x^2)]+[D + Ex + F(x^2)]+[G + Hx + I(x^2)]
x is the independent variable and Y is dependent. I have the values of Y for 10 values of x.
Any suggestions/ help/ recommendations would be greatly appreciated. Is there any way the value of the co-efficients can be found without having to guess the initial values of the co-efficients?
Thanks very much.
Nik.

Réponse acceptée

Roger Wohlwend
Roger Wohlwend le 10 Juin 2014
There is no unique solution for your equation. So you cannot estimate the coefficients.
What you can do is estimating the following equation: Y = R + Sx + T(x^2). Use linear regression, then it is not necessary to guess initial values.
  2 commentaires
Nik
Nik le 10 Juin 2014
Hey Roger,
Thanks for the answer!
Using the 'Y = R + Sx + T(x^2)' will leave me with 3 equations (equations for R, S and T) and 9 unknowns (A to I from my initial question). I need the values of the co-efficients. Can I use something like the 'polyfit' or 'cftool' to get the values that I need?
Thanks again!
Roger Wohlwend
Roger Wohlwend le 10 Juin 2014
Modifié(e) : Roger Wohlwend le 10 Juin 2014
No, you can't. All you can do is fit the equation Y = R + Sx + T(x^2). In your original equation with 9 coefficients you have three constants, three linear terms and three quadratic terms:
R = A + D + G;
S = B + E + H;
T = C + F + I;
There is no unique solution to that. No algorithm can help you. Your problem is unsolvable.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Polynomials dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by