Using Principle Component Analysis (PCA) in classification
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi All, I am working in a project that classify certain texture images. I will be using Gaussian Mixture model to classify all the database into textured and non-textured images.
Now, I am using PCA to reduce the dimension of my data that is 512 dimensions, so I can train the GMM model. The results from PCA are new variables and those variables will be used in the training process:
[wcoeff,score,latent,~,explained] = pca(AllData);
The question is: in the testing process how can I use the wcoeff to get the same variables? Do I just multiply the wcoeff with the new image?
2 commentaires
Delsavonita Delsavonita
le 8 Mai 2018
Modifié(e) : Adam
le 8 Mai 2018
i have the same problem too, since you post the question on 2014, you must be done doing your project, so can you kindly send me the solution for this problem ? i really need this...
Réponses (1)
KaMu
le 26 Juin 2014
Modifié(e) : KaMu
le 26 Juin 2014
2 commentaires
Image Analyst
le 8 Mai 2018
Because we don't understand your question. See my attached PCA demo. It will show you how to get the PC components.
jin li
le 13 Juil 2018
It is right. He finally display each component. first calculate coeff then component=image matrix * coeff so this will be eigenimage
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!