Using Principle Component Analysis (PCA) in classification

7 vues (au cours des 30 derniers jours)
KaMu
KaMu le 24 Juin 2014
Commenté : jin li le 13 Juil 2018
Hi All, I am working in a project that classify certain texture images. I will be using Gaussian Mixture model to classify all the database into textured and non-textured images.
Now, I am using PCA to reduce the dimension of my data that is 512 dimensions, so I can train the GMM model. The results from PCA are new variables and those variables will be used in the training process:
[wcoeff,score,latent,~,explained] = pca(AllData);
The question is: in the testing process how can I use the wcoeff to get the same variables? Do I just multiply the wcoeff with the new image?
  2 commentaires
Delsavonita Delsavonita
Delsavonita Delsavonita le 8 Mai 2018
Modifié(e) : Adam le 8 Mai 2018
i have the same problem too, since you post the question on 2014, you must be done doing your project, so can you kindly send me the solution for this problem ? i really need this...
Adam
Adam le 8 Mai 2018
Don't post your e-mail address in a public forum.

Connectez-vous pour commenter.

Réponses (1)

KaMu
KaMu le 26 Juin 2014
Modifié(e) : KaMu le 26 Juin 2014
I keep received emails that some one answer my question but I can't see any answers!
  2 commentaires
Image Analyst
Image Analyst le 8 Mai 2018
Because we don't understand your question. See my attached PCA demo. It will show you how to get the PC components.
jin li
jin li le 13 Juil 2018
It is right. He finally display each component. first calculate coeff then component=image matrix * coeff so this will be eigenimage

Connectez-vous pour commenter.

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by