solving three quadratic equations

1 vue (au cours des 30 derniers jours)
benjamin
benjamin le 9 Juil 2014
Commenté : benjamin le 10 Juil 2014
A=458.21
B=256.84
C=308.95
A=m*8/m*8+n*9+p*14
B=n*9/m*8+n*9+p*14
C=p*14/m*8+n*9+p*14
  3 commentaires
Joseph Cheng
Joseph Cheng le 9 Juil 2014
substitution? not too hard of an series to solve by hand as the first A equation can simplified and substitute the 9n+14p = 394.21.
benjamin
benjamin le 10 Juil 2014
thanks for the answers but the equation is a bit complicated not the usual substitution method is to be use but instead after running the equation in the matlab it has to return a total of 1024.
to clarify this example the first equation states A=m*8/m*8+n*9+p*14 == m*8/m*8+n*9+p*14=458.21 and the final equation should be A+ B+C=D (1024) thanks.

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Partial Differential Equation Toolbox dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by