Exploiting symmetry in multidimensional arrays
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Patrick Mboma
le 13 Juil 2014
Commenté : Roger Stafford
le 14 Juil 2014
Dear all, In a symmetric matrix A of size [n,n], for two indices i and j such that 1<=i<=n and 1<=j<=n we have that A(i,j)=A(j,i). Suppose I know A(i,j) for i>=j how can I efficiently set A(j,i)?
More generally, if I have a hypercube A of size n^m, how can I, on the basis of A(i1,i2,...,im) with i1>=i2>=i3....>=im, set all A for all permutations of i1,i2,...,im instead of recalculating the entry for each permutation.
Thanks,
0 commentaires
Réponse acceptée
Roger Stafford
le 13 Juil 2014
For a general m-dimensional n^m array, A, do this:
[I1,I2,...,Im] = ndgrid(1:n);
P = [I1(:),I2(:),...,Im(:)];
Q = sort(P,2,'descend');
A(sub2ind(size(P),P(:,1),P(:,2),...,P(:,m))) = ...
A(sub2ind(size(Q),Q(:,1),Q(:,2),...,Q(:,m)))
Note: The four three-dot ellipses (...) shown above (but not the one following the '=' sign) are to be filled in by the user.
4 commentaires
Roger Stafford
le 14 Juil 2014
@Patrick. Yes, you are quite right. I should have used size(A). I must have had a mental black out at that point! :-)
Plus de réponses (1)
Roger Stafford
le 13 Juil 2014
For a 2D array it's easy:
B = tril(A,-1)
A = B+B.'+diag(A);
0 commentaires
Voir également
Catégories
En savoir plus sur Matrix Indexing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!