Exploiting symmetry in multidimensional arrays

1 vue (au cours des 30 derniers jours)
Patrick Mboma
Patrick Mboma le 13 Juil 2014
Commenté : Roger Stafford le 14 Juil 2014
Dear all, In a symmetric matrix A of size [n,n], for two indices i and j such that 1<=i<=n and 1<=j<=n we have that A(i,j)=A(j,i). Suppose I know A(i,j) for i>=j how can I efficiently set A(j,i)?
More generally, if I have a hypercube A of size n^m, how can I, on the basis of A(i1,i2,...,im) with i1>=i2>=i3....>=im, set all A for all permutations of i1,i2,...,im instead of recalculating the entry for each permutation.
Thanks,

Réponse acceptée

Roger Stafford
Roger Stafford le 13 Juil 2014
For a general m-dimensional n^m array, A, do this:
[I1,I2,...,Im] = ndgrid(1:n);
P = [I1(:),I2(:),...,Im(:)];
Q = sort(P,2,'descend');
A(sub2ind(size(P),P(:,1),P(:,2),...,P(:,m))) = ...
A(sub2ind(size(Q),Q(:,1),Q(:,2),...,Q(:,m)))
Note: The four three-dot ellipses (...) shown above (but not the one following the '=' sign) are to be filled in by the user.
  4 commentaires
Patrick Mboma
Patrick Mboma le 14 Juil 2014
Modifié(e) : Patrick Mboma le 14 Juil 2014
@Alfonso What you suggest would really be neat and seems to work well in the two-dimensional case that I tested. I still need to investigate higher dimensions and the speed.
Roger Stafford
Roger Stafford le 14 Juil 2014
@Patrick. Yes, you are quite right. I should have used size(A). I must have had a mental black out at that point! :-)

Connectez-vous pour commenter.

Plus de réponses (1)

Roger Stafford
Roger Stafford le 13 Juil 2014
For a 2D array it's easy:
B = tril(A,-1)
A = B+B.'+diag(A);

Catégories

En savoir plus sur Matrix Indexing dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by