from the conic equation
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Sebahattin Bektas
le 15 Juil 2014
Commenté : Rena Berman
le 11 Sep 2023
given an equation
A*x^2+B*y^2+C*z^2+ D*x*y + D*x*z + F*y*z -1=0
how do I extract the center [x0,y0,z0], the axes lengths [a,b,c], and the rotation angles [ex,ey,ez] of the ellipsoid that it describes....
2 commentaires
Matt J
le 17 Juil 2014
Not sure why you edited your original question. This version is much less clear. The original question was, given an equation
A*x^2+B*y^2+C*z^2+ D*x*y + D*x*z + F*y*z -1=0
how do I extract the center [x0,y0,z0], the axes lengths [a,b,c], and the rotation angles [ex,ey,ez] of the ellipsoid that it describes.
Réponse acceptée
Matt J
le 15 Juil 2014
Modifié(e) : Matt J
le 15 Juil 2014
Rewrite in matrix form
[x-x0,y-y0,z-z0]*Q*([x-x0;y-y0;z-z0])=1
where Q=[A,D,E;D,B,F;E,F,C]. The eigen-decomposition of Q will be
Q=R*diag(1./[a,b,c])*R.'
where columns of the rotation matrix R are the axes of the ellipsoid. You will have to choose between one of many possible decompositions of R into Euler angles [ex,ey,ez]
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Geometric Transformation and Image Registration dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!