To delete rows from a cell array specifying conditions
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Yuliia
le 17 Juil 2014
Modifié(e) : Andrei Bobrov
le 17 Juil 2014
I was searching for smth like this, but I haven't found it. The task is: I have a cell array with 25 columns. I need to filter data according to some conditions - only with FLAGS 'O PGD', with SoT 'track' and without 'nan'. So, as a result I need to delete rows which contain this info and corresponding lat, long, so that only reliable data left.
I've written a part of the program to filter data:
A=raw(:,3); %PGD flags
B=raw(:,17); %track,search,memory modes
D=raw(:,14); %distance
C=find(strcmp(' O PGD ',raw(:,3))); %indeces
C1=D(C); %values of distance
E=find(strcmp('track',B)); %indeces
E1=D(E); %values of distance
But, in this case, only distance is filtered and I can't delete another rows(lat,long).
Also, I was trying to work with num data (I mean, to represent the same information, but in num format). I've deleted only rows with 'nan', but in the whole file:
TF1=isnan(num2(:,14)); %condition, build in function
num2(TF1,:)=[]; %delete rows which specify condition in file num2
So, the question will be: how can I delete rows in cell format specifying these conditions OR how to write a condition in num format to delete these rows?
Example of information:
'Flags' 'Dist[km]' 'SoT' 'Lat.' 'Long.'
' O PGD ' 'nan' 'search' 47.562701 2.169937
' O PGD ' 'nan' 'search' 47.562661 2.170009
' O PGD ' 'nan' 'track' 47.562622 2.170081
' O PGD ' 66.4 'track' 47.562584 2.170151
' O PGD ' 66.4 'track' 47.562544 2.170225
' O PGD ' 66.4 'track' 47.562505 2.170297
' O PGD ' 'nan' 'track' 47.562472 2.17038
' O PGD ' 66.3 'track' 47.562433 2.170453
' O PGD ' 66.3 'track' 47.562395 2.170525
' O PGD ' 66.3 'track' 47.562356 2.170599
' O PGD ' 66.3 'track' 47.562317 2.170672
' O PGD ' 66.3 'track' 47.562278 2.170744
' O PGD ' 66.3 'track' 47.56224 2.170817
' O PGD ' 66.3 'track' 47.562201 2.17089
' O PGD ' 66.3 'track' 47.562163 2.170962
' O PGD ' 66.3 'track' 47.562125 2.171034
' O PGD ' 'nan' 'track' 47.562085 2.171109
' O PGD ' 66.2 'track' 47.562046 2.171182
' O PGD ' 66.3 'track' 47.562008 2.171255
It must look like:
'Flags' 'Dist[km]' 'SoT' 'Lat.' 'Long.'
' O PGD ' 66.4 'track' 47.562584 2.170151
' O PGD ' 66.4 'track' 47.562544 2.170225
' O PGD ' 66.4 'track' 47.562505 2.170297
' O PGD ' 66.3 'track' 47.562433 2.170453
' O PGD ' 66.3 'track' 47.562395 2.170525
' O PGD ' 66.3 'track' 47.562356 2.170599
' O PGD ' 66.3 'track' 47.562317 2.170672
' O PGD ' 66.3 'track' 47.562278 2.170744
' O PGD ' 66.3 'track' 47.56224 2.170817
' O PGD ' 66.3 'track' 47.562201 2.17089
' O PGD ' 66.3 'track' 47.562163 2.170962
' O PGD ' 66.3 'track' 47.562125 2.171034
' O PGD ' 66.2 'track' 47.562046 2.171182
' O PGD ' 66.3 'track' 47.562008 2.171255
Thanks in advance.
2 commentaires
Matz Johansson Bergström
le 17 Juil 2014
Could you upload the raw data as a .mat file? It would be so much easier to debug.
Réponse acceptée
Andrei Bobrov
le 17 Juil 2014
data = raw(:,[3,14,17,20,21]);
ll = ~cellfun(@(x)strcmp('nan',x),data(:,2));
out = data(ll,:);
2 commentaires
Andrei Bobrov
le 17 Juil 2014
Modifié(e) : Andrei Bobrov
le 17 Juil 2014
Hi Yuliia! For your case:
data = raw(:,[3,14,17,20,21]);
ll = ~any([strcmp('nan',data(:,2)),...
ismember(data(:,[1,3]),{' O PGD ','search','memory'})],2);
out = data(ll,:);
or
data = raw(:,[3,14,17,20,21]);
d = data(:,1:3);
ll = false(size(d));
l0 = find(cellfun(@ischar,d));
ll(l0) = ismember(d(l0),]),{' O PGD ','search','nan','memory'});
out = data(~any(ll,2),:);
Plus de réponses (1)
Matz Johansson Bergström
le 17 Juil 2014
Andrei beat me to it (again), but here is how you could answer using a loop.
keep_cols = [3, 14, 17, 20, 21];
tmp = raw(:, keep_cols); %copy the columns we wish to keep
j = 1;
for i = 1:size(raw, 1)
if ~strcmp(raw(i, 14), 'nan') %filter out the not-a-number distance entries
new_raw(j, :) = tmp(i, :); %copy to new entry in new_raw
j = j+1;
end
end
new_raw contains the filtered data. Preferably you would use cellfun, because it is vectorized, so it is usually much faster.
0 commentaires
Voir également
Catégories
En savoir plus sur Database Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!