eig versus svd functions?
28 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Traian Preda
le 18 Juil 2014
Modifié(e) : Alfonso Nieto-Castanon
le 18 Juil 2014
Hi,
I would like to ask what is the difference between the function eig and svd and what is the difference between the right eigenvectors and the right singular eigenvectors of these functions?
Thank you
0 commentaires
Réponse acceptée
Alfonso Nieto-Castanon
le 18 Juil 2014
Modifié(e) : Alfonso Nieto-Castanon
le 18 Juil 2014
SVD is a decomposition for arbitrary-size matrices, while EIG applies only to square matrices. They are very much related:
The right singular vectors of A are the eigenvectors of A'*A, and the left singular vectors of A are the eigenvectors of A*A'.
Similarly the singular values of A are the square root of the eigenvalues of A*A' (or A'*A, the eigenvalues of those are just the same)
2 commentaires
Alfonso Nieto-Castanon
le 18 Juil 2014
not exactly, there are simply no "eigenvectors" of a non-square matrix (eigenvalues/eigenvectors are only defined for square matrices)
Plus de réponses (2)
Traian Preda
le 18 Juil 2014
1 commentaire
Alfonso Nieto-Castanon
le 18 Juil 2014
the eigenvectors of a square matrix are not generally the same as any of the singular vectors of that same matrix (they are equal/equivalent only when the matrix is symmetric)
Traian Preda
le 18 Juil 2014
1 commentaire
Alfonso Nieto-Castanon
le 18 Juil 2014
Modifié(e) : Alfonso Nieto-Castanon
le 18 Juil 2014
You can reconstruct A from its eigenvectors only if A is normal (A'*A==A*A'). You can reconstruct A from its singular vectors for any matrix A.
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!