How can I use the Lasso to apply to Logistic Regression?
30 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Cheng-Yu Hsieh
le 29 Août 2021
Réponse apportée : Kumar Pallav
le 2 Sep 2021
I am trying to apply supervised binary classification problem with the help of lasso to prevent overfitting. But I am stuck at how to apply lasso to logistic classification function, and how to predict the response values.
Below is the code, where:
- grpTrain_Lasso: a vector of values 1's & 2's, representing 2 categories.
- grpTrain_Lasso_categorical: containing 2 categories: "Cancer", "Normal".
- grpTrain: Original categorical vector, containing the diagnosis of each patient. ("Cancer", "Normal")
- obsSmall: 195x100, where columns are # of patients records, rows are # of features variables.
Lasso Embedded Model Training
[grpTrain_Lasso grpTrain_Lasso_categorical] = grp2idx(grpTrain)
lModel = lasso(obsSmall, grpTrain_Lasso, "CV", 20)
% column: predictor
% row: lambda value for each parameter (for the predictor)
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!