Image Normalization before Fine-Tuning a pretrained CNN for image classification
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello,
Is it possible to directly add an image normalization step, to this training code below, to normalize all the dataset images before training the CNN pretrained model ? I need to train my model with pixel values ranging between 0 and 1 instead of 0 and 255.
imds = imageDatastore(dataset, 'IncludeSubfolders',true,'LabelSource','foldernames')
tbl = countEachLabel(imds);
numClasses = height(tbl);
[trainingSet, testSet] = splitEachLabel(imds, 0.7,'randomize');
I tried to modify the image input layer (Normalization 'rescale-zero-one') of the model but it did not work because this option does not exist effectively ( previous question asked related: https://fr.mathworks.com/matlabcentral/answers/1441834-imageinputlayer-normalization-data-normalization-options?s_tid=srchtitle )
Is there any way to normalize directly images in augmentedImageDatastore ?
augmentedTrainingSet = augmentedImageDatastore(imageSize, ...
trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize, ...
testSet, 'ColorPreprocessing', 'gray2rgb');
Thank you in advance !! Appreciate any kind of help !
0 commentaires
Réponse acceptée
yanqi liu
le 26 Sep 2021
sir, may be you shoud use function handle to define your read image style, pleaes read the follow code
clc; clear all; close all;
dataset = fullfile(matlabroot,'toolbox','matlab');
imds = imageDatastore(dataset,'IncludeSubfolders',true,...
'FileExtensions','.tif',...
'LabelSource','foldernames',....
'ReadFcn',@data_preporcess);
tbl = countEachLabel(imds);
numClasses = height(tbl);
[trainingSet, testSet] = splitEachLabel(imds, 0.7,'randomize');
function data = data_preporcess(file)
data = imread(file);
% ranging between 0 and 1 instead of 0 and 255
data = mat2gray(data);
end
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Image Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!