How to solve single non-linear equation?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
ISHA ARORA
le 21 Sep 2021
Commenté : ISHA ARORA
le 24 Sep 2021
Can anyone please help in solving the following equation:
d/dt[V.(X/1-X)]= An-Ax-Bx
where, V and X are function of t.
A,B, and n are constants
2 commentaires
Réponse acceptée
Walter Roberson
le 21 Sep 2021
syms A B n X(t) V(t)
eqn = diff(V(t) .* X(t)/(1-X(t)), t) == A*n - A*X(t) - B*X(t)
SE = simplify(lhs(eqn) - rhs(eqn))
collect(SE, X(t))
dsolve(ans)
You do not have a single linear equation. You are taking the derivative of a multiple of function V and function X and that is something that cannot be resolved by itself.
3 commentaires
Walter Roberson
le 22 Sep 2021
Please confirm that what you are taking the derivative of on the left side is the product of two unknown functions in t.
If so, then my understanding is the situation cannot be resolved -- in much the same way that you cannot solve a single equation in two variables except potentially down to finding a relationship between the variables.
In some cases it can be resolved. For example, if V(t) is known to be linear
syms A B n X(t) V(t) C2 C1 C0
V(t) = C1*t + C0
eqn = diff(V(t) .* X(t)/(1-X(t)), t) == A*n - A*X(t) - B*X(t)
SE = simplify(lhs(eqn) - rhs(eqn))
col = collect(SE, X(t))
sol = simplify(dsolve(col))
... which is independent of time. Extending V(t) to quadratic gives you a situation dsolve() is not able to resolve.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Calculus dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






