issue in solving set of ode's
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Here i gave my script with dummy R, G, L, g matrices(because of confidentiality).
Here iam forming the matrices G, L and g interms of theta and extracting these variable matrices to solve set of odes. In that iam substituting 26th solution(y(26)) in place of theta. I attached photo better look into that.
I want to know whether the steps from "commonvars" are correct or not.
syms phi theta
a = 2*phi+5;
b = diff(a);
R = rand(27, 27);
Gi = b*cos(theta)*rand(25, 25);
G = [Gi zeros(25, 2);
zeros(2, 27)]
Li = sin(theta+5)*rand(25, 25);
L = [Li zeros(25, 2);
zeros(2, 25) [1 0; 0 1]]
g = (sin(theta)+cos(theta+2))*rand(25, 25)
commonvars = unique([symvar(G), symvar(L), symvar(g)]); %probably just theta
Gfun = matlabFunction(G, 'vars', commonvars);
Lfun = matlabFunction(L, 'vars', commonvars);
gfun = matlabFunction(g, 'vars', commonvars);
tspan = [0 1];
myfun = @(t,y)scriptname(t, y, R, Gfun, Lfun, gfun);
y0 = zeros(27, 1);
[t, y] = ode45(myfun, tspan, y0);
h = figure;
% plot
for i=1:25
plot(t,y(:, i));
end
function dydt = scriptname(t, y, R, Gfun, Lfun, gfun)
f = 60; % frequency
Wr = 2*pi*f; % Angular velocity of rotor
inertia = 0.05;
% evaluation of g (numerical) with theta = y(27)
gn = gfun(y(27))
for i=1:25
I(i,1)=y(i);
end
Te = 1/2*I'*gn*I
V=[sqrt(2)*400/sqrt(3)*cos(Wr*t);
sqrt(2)*400/sqrt(3)*cos(Wr*t+2.*pi/3.);
sqrt(2)*400/sqrt(3)*cos(Wr*t-2.*pi/3.);
zeros(Nr+1, 1);
0;
Te/inertia;
y(26)];
% evaluation of G and L (numerical) with theta = y(27)
Gn = Gfun(y(27))
Ln = Lfun(y(27))
dydt = Ln\(V-R*y-y(26)*Gn*y)
end
Actually the code was running fine and giving waveforms also but not as expected.
I want to make sure whether steps for ode calculation are correct or not.
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!