Fastest (parallelized, maybe) way to run exponential fit function in a big matrix of data
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Brunno Machado de Campos
le 29 Sep 2021
Commenté : Brunno Machado de Campos
le 29 Sep 2021
Dear experts,
I am trying to ensure the most optimized syntax to run a part of my code. In summary, I need to perform an exponential fit of a series with 6 points, but ~2 million times (independent samples). In other words, I have a reshaped matrix 6x2,000,000.
This is my code right now (each loop iteration takes 0.02 seconds what makes this process prohibitive):
Xax = [30;60;90;120;150]; % The constant X series.
f = @(b,Xax) b(1).*exp(b(2).*Xax); % Exponential model
% LoopMap == my 6x2,000,000 matrix
for k = 1:size(LoopMap,2) %parfor? Any GPU model (if this is and optimal example)
bet = fminsearch(@(b) norm(LoopMap(:,k) - f(b,Xax)),[0;0]);
CoefAtmp(1,k) = abs(1/bet(2));
end
My PC is a standard machine (8th gen Core i7, 32Gb ram) with a not exceptional graphic card.
Thank you all in advance.
1 commentaire
Réponse acceptée
Matt J
le 29 Sep 2021
Modifié(e) : Matt J
le 29 Sep 2021
Additional speed-up should also be possible by reducing your problem to a 1-variable estimation and removing subsref operations from your objective function.
Xax = [30;60;90;120;150]; % The constant X series.
B2=nan(1,size(LoopMap,2));
Initial=Xa.^[0,1]\log(LoopMap);
Initial=Initial(2,:);
for k = 1:size(LoopMap,2) %parfor? Any GPU model (if this is and optimal example)
y=LoopMap(:,k);
B2(k) = fminsearch( @(b2) objective(b2,Xax,y) , Initial(k));
end
CoefAtmp = abs(1./B2);
function cost=objective(b2,Xax,y)
ex=exp(b2*Xa);
b1=ex\y;
cost=norm(b1*ex-y);
end
Plus de réponses (1)
Matt J
le 29 Sep 2021
Modifié(e) : Matt J
le 29 Sep 2021
If it's acceptable to you, a log-linear least squares fit can be done very fast and without loops
A=Xax.^[0,1];
Bet=A\log(LoopMap);
CoefAtmp=1./abs(Bet(2,:));
3 commentaires
Matt J
le 29 Sep 2021
Modifié(e) : Matt J
le 29 Sep 2021
Both methods are exponential fits.
Do you mean you must have a linear least squares objective? If so, intiailizing fminsearch with the log-linear solution will probably speed things up.
However, you should first check that the linear and the loglinear methods give significantly different results over a small but representative subset of your LoopMap(:,k). If not, you can use that to defend the loglinear method to the academic community.
Voir également
Catégories
En savoir plus sur Parallel Computing Fundamentals dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!