Problem with solving multivariable trigonometric equations

4 vues (au cours des 30 derniers jours)
Minerva Bionic
Minerva Bionic le 30 Sep 2021
Hi everyone,
I have no idea where is wrong in my code?
clear all;
%%
clc
Fs = 1e6;
f = 5;
t = 2e6;
ang0 = t*2*pi*f/Fs
ang0 = 62.8319
dang = 1*2*pi*f/Fs
dang = 3.1416e-05
y0= 1*sin(t*2*pi*f/Fs);
y1= 1*sin((t+1)*2*pi*f/Fs);
y2= 1*sin((t+2)*2*pi*f/Fs);
% for i = 1:10e6
% Curve(i) = 1*sin(i*2*pi*f/Fs);
% end
%
% close all
% hold on
% plot(Curve)
%%
syms x y z
% assume(x > 0)
% assumeAlso(x < 1)
% assume(z >= 0)
% assumeAlso(z <= 2*pi)
% assume(y > 0)
% assumeAlso(y <= 100)
[x,y,z]=solve(x*sin((t*2*pi*y/Fs) + z)==y0 ,x*sin(((t+1)*2*pi*y/Fs)+z)==y1,x*sin(((t+2)*2*pi*y/Fs)+z)==y2,'ReturnConditions',true)
x = Empty sym: 0-by-1 y = Empty sym: 1-by-0 z = Empty sym: 0-by-1

Réponse acceptée

Matt J
Matt J le 30 Sep 2021
Modifié(e) : Matt J le 30 Sep 2021
In order for solve() to find a solution, an exact analytical solution must exist.
  9 commentaires
Minerva Bionic
Minerva Bionic le 30 Sep 2021
Modifié(e) : Minerva Bionic le 30 Sep 2021
I know "least square nonlinear" and vpasolve methods are great in solving equations. But since I'm curious about another possible methods, I thought it would be fine if I ask you for other possible methods.
Minerva Bionic
Minerva Bionic le 30 Sep 2021
Modifié(e) : Minerva Bionic le 30 Sep 2021
As I realized I should provide arrays of data for x, y, z for lsqnonlin method.
The solve method can return symbolic solutions. Since I want to implement the solution in a hardware, solve method is the best method in my case.
However, I still have problem with numerical vpasolve() method
clear all
clc
Fs = 1e6;
f = 5;
t = 2e6;
y0= 1*sin(t*2*pi*f/Fs);
y1= 1*sin((t+1)*2*pi*f/Fs);
y2= 1*sin((t+2)*2*pi*f/Fs);
% Available information for solving equations: y0,y1,y2, Fs, t
% Answers: x=1 , y=5, z=0
syms x y z
[x,y,z]=vpasolve(x*sin((t*2*pi*y/Fs) + z)==y0 ,...
x*sin(((t+1)*2*pi*y/Fs)+z)==y1 , ...
x*sin(((t+2)*2*pi*y/Fs)+z)==y2,[x y z],[0 1.2; 0 10; -pi pi])
x = 
0.82808197968524438542250921861996
y = 
6.0380495220795251235306856358895
z = 
%% Acceptable answers by reducing variables
clc
syms x z
y= 5;
[x,z] = vpasolve(x*sin((t*2*pi*y/Fs) + z)==y0 ,...
x*sin(((t+1)*2*pi*y/Fs)+z)==y1,[x z],[0 1.2; -pi pi])
x = 
1.0000000003041361573960955992907
z = 

Connectez-vous pour commenter.

Plus de réponses (0)

Produits


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by