integral multiple infinite limits
24 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi , i have to solve one more difficult integral...its an integral like this
fun=∫[exp(-u^2)*(∫fun1(v,u,x,Kt)dv)*(∫fun2(v,u,x,Kt)dv]du
The limits are for v[1e-9,Inf] and u[-inf,inf]
I tried to transform the function mydblquad of Mike Hossea http://www.mathworks.com/matlabcentral/answers/14514-double-integral-infinite-limits but i didn't manage to do it..Is there any idea??? Thanks!!!
0 commentaires
Réponse acceptée
Mike Hosea
le 2 Sep 2011
Try this:
function q = paris(fun1,fun2,x,Kt)
% q = ∫[exp(-u^2)*(∫fun1(v,u,x,Kt)dv)*(∫fun2(v,u,x,Kt)dv]du
% The limits are 1e-9 <= v < inf and -inf < u < inf.
a = 1e-9;
innerintegral = @(u) ...
arrayfun(@(u1) ... % u1 is always a scalar here.
exp(-u1^2) * ...
quadgk(@(v)fun1(v,u1*ones(size(v)),x,Kt),a,inf) * ...
quadgk(@(v)fun2(v,u1*ones(size(v)),x,Kt),a,inf), ...
u);
q = quadgk(innerintegral,-inf,inf);
3 commentaires
Mike Hosea
le 2 Sep 2011
If fun1 and fun2 are m-files, you need to use "@", i.e. paris(@fun1,@fun2,x,Kt). You leave off the "@" when they are instead variables to which you have stored anonymous functions. Note that the way I set it up, fun1 and fun2 are both functions of 4 variables: v, u, x, and Kt.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!