The way to solve a singular matrix

37 vues (au cours des 30 derniers jours)
Amad-Adeen Baiuk
Amad-Adeen Baiuk le 22 Août 2014
Commenté : Aditya Agrawal le 8 Déc 2020
Hi
There is any one know how the method to decompose the singular square matrix using Matlab. Someone told me the Matlab have something like a ready Forthran subroutine. Does anyone know how to use it in Matlab?

Réponses (3)

Mikhail
Mikhail le 22 Août 2014
  1 commentaire
Amad-Adeen Baiuk
Amad-Adeen Baiuk le 23 Août 2014
thanks Mikhail. but how can apply the svd to find the inverse of square singular matrix in order to solve the set of linear system.

Connectez-vous pour commenter.


John D'Errico
John D'Errico le 23 Août 2014
Modifié(e) : John D'Errico le 23 Août 2014
help pinv
Not much more to say, since you give very little info to help you on. Note that computing the inverse of a matrix is almost never recommended. The backslash operator is a better choice always than inv. But pinv is a good tool for this purpose, when backslash (and surely also inv) will fail.
A = ones(2);
A\[1;1]
Warning: Matrix is singular to working precision.
ans =
NaN
NaN
inv(A)*[1;1]
Warning: Matrix is singular to working precision.
ans =
Inf
Inf
pinv(A)*[1;1]
ans =
0.5
0.5
  2 commentaires
Einat Shoval
Einat Shoval le 24 Déc 2017
Thank you so much for this!! Was stuck on this for two days now until I found your answer :)
Aditya Agrawal
Aditya Agrawal le 8 Déc 2020
Thankyou so much! I had the same issue and your solution works!

Connectez-vous pour commenter.


Jess
Jess le 22 Mar 2016
% Goal: solve A*x == b for x
% Set up some matrix A (I used a sparse matrix) -- do yourself
% Set up the vector b -- do yourself
% Perform SVD on A
[U,S,V] = svd(A);
% A == U*S*V' % Not needed, but you can check it yourself to confirm
% Calc number of singular values
s = diag(S); % vector of singular values
tolerance = max(size(A))*eps(max(s));
p = sum(s>tolerance);
% Define spaces
Up = U(:,1:p);
%U0 = U(:,p+1:Nx);
Vp = V(:,1:p);
%V0 = V(:,p+1:Nx);
%Sp = spdiags( s(1:p), 0, p, p );
SpInv = spdiags( 1.0./s(1:p), 0, p, p );
% Calc AInv such that x = AInv * b
AInv = Vp * SpInv * Up';
x = AInv * b; % DONE!
  1 commentaire
Xin Shen
Xin Shen le 10 Juil 2019
When I tried your idea to solve my problem, I got an error "SVD does not support sparse matrices. Use SVDS to compute a subset of the singular values and vectors of a sparse matrix". Does SVDS work for your idea?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by