Finding Optimal Number Of Clusters for Kmeans

28 vues (au cours des 30 derniers jours)
jameskl
jameskl le 26 Août 2014
I want to find the number of clusters for my data for which the correlation is above .9. I know you can use a sum of squared error (SSE) scree plot but I am not sure how you create one in Matlab. Also, are there any other methods?

Réponses (2)

Taro Ichimura
Taro Ichimura le 1 Juin 2016
Hello,
you have 2 way to do this in MatLab, use the evalclusters() and silhouette() to find an optimal k, you can also use the elbow method (i think you can find code in matlab community) check matlab documentation for examples, and below
% example
load fisheriris
clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
'replicate',5);
end
va = evalclusters(meas,clust,'CalinskiHarabasz')

Pamudu Ranasinghe
Pamudu Ranasinghe le 19 Juin 2022
Refer "evalclusters" function
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:6);
Optimal_K = eva.OptimalK;
  1 commentaire
Walter Roberson
Walter Roberson le 19 Juin 2022
Modifié(e) : Walter Roberson le 23 Juin 2022
Real mathematics says that every unique point should be its own cluster.

Connectez-vous pour commenter.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by