how to extract features from 350 clusters | extractEigenFeatures

3 vues (au cours des 30 derniers jours)
Pavan Kumar B N
Pavan Kumar B N le 10 Oct 2021
Hello All,
I have around 350 clusters and I am trying to retain only matching clusters and remove unmatched ones. How to use this example in this case https://www.mathworks.com/help/lidar/ref/pcshowmatchedfeatures.html
  2 commentaires
Venkata Ram Prasad Vanguri
Hi,
We can extract matched cluster segments and corresponding features from the matched index pairs as below:
matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));
Pavan Kumar B N
Pavan Kumar B N le 11 Oct 2021
Modifié(e) : Pavan Kumar B N le 11 Oct 2021
@Venkata Ram Prasad Vanguri Thank you so much for your response.
I tried as you suggested on pcap data. When I run the following code it is generating 50 figures of matched segments. I tired visualize these results using pcplayer. But it is giving a error like "Too many input arguments". Could you please help on how to visulize these matching features using pcplayer.?
Eagerly looking forward for your kind help.
veloReader = velodyneFileReader('test.pcap', 'VLP16');
for i = 1:50
ptCloud1 = veloReader.readFrame(i);
ptCloud2 = veloReader.readFrame(i+1);
%remove the ground plane from the scans
maxDistance = 1;
referenceVector = [0 0 1];
[~,~,selectIdx] = pcfitplane(ptCloud1, maxDistance, referenceVector);
ptCloud1 = select(ptCloud1,selectIdx, 'OutputSize', 'full');
[~,~,selectIdx] = pcfitplane(ptCloud2, maxDistance, referenceVector);
ptCloud2 = select(ptCloud2,selectIdx, 'OutputSize', 'full');
%cluster the point cloud with 10 points per cluster
minDistance = 2;
minPoints = 10;
lables1 = pcsegdist(ptCloud1, minDistance, 'NumClusterPoints', minPoints);
lables2 = pcsegdist(ptCloud2, minDistance, 'NumClusterPoints', minPoints);
[eigFeatures1, segments1] = extractEigenFeatures(ptCloud1,lables1);
[eigFeatures2, segments2] = extractEigenFeatures(ptCloud2,lables2);
%create matrices of the features and centroids extracted from each point
%cloud
features1 = vertcat(eigFeatures1.Feature);
features2 = vertcat(eigFeatures2.Feature);
centroids1 = vertcat(eigFeatures1.Centroid);
centroids2 = vertcat(eigFeatures2.Centroid);
%find future matches
indexPairs = pcmatchfeatures(features1,features2, pointCloud(centroids1),pointCloud(centroids2),'MatchThreshold',0.1,'RejectRatio',0.9);
matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));
figure
pcshowMatchedFeatures(matchedSegments1,matchedSegments2,matchedFeatures1,matchedFeatures2)
title('Matched Segments')
xlimits = [-35 118];
ylimits = [-55 75];
zlimits = [-10 10];
player = pcplayer(xlimits,ylimits,zlimits);
%while(hasFrame(ptCloudPlayer))
% ptCloudObj = readFrame(ptCloudPlayer);
view(player,matchedSegments2.Location,matchedSegments2.Intensity);
%end
end

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Preprocessing dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by