Using Linear Mixed Models with two fixed factors and a random factor

7 vues (au cours des 30 derniers jours)
Hari krishnan
Hari krishnan le 11 Oct 2021
Commenté : the cyclist le 11 Oct 2021
I am trying to make a Linear Mixed Model to see if there is a statistical significance with two fixed factors ('ANTS and LABEL') with the ('STATE') as a random factor. Can anyone suggest to me how to proceed with such a model in Matlab?
Data file is attached alongside a sample code. Is the code right?
m = fitlme(data, 'RATE ~ (ANT*LABEL) + (1 | STATE)');
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue Lower Upper
{'(Intercept)' } 0.033027 0.0056879 5.8065 294 1.6533e-08 0.021832 0.044221
{'ANTS' } -0.00012262 0.00065256 -0.1879 294 0.85108 -0.0014069 0.0011617
{'LABEL_Poor nest' } -0.015508 0.0080189 -1.934 294 0.054076 -0.03129 0.00027342
{'ANTS:LABEL_Poor nest'} 0.00036122 0.0009203 0.3925 294 0.69497 -0.00145 0.0021724

Réponse acceptée

the cyclist
the cyclist le 11 Oct 2021
Modifié(e) : the cyclist le 11 Oct 2021
You can fit such a model using the fitlme function from the Statistics and Machine Learning Toolbox.
I think the following code fits the model you mentioned:
data = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/764231/Entry_rates.xlsx'); % You can just read in your local file
mdl = fitlme(data,'RATE ~ ANTS + LABEL + (1|STATE)')
mdl =
Linear mixed-effects model fit by ML Model information: Number of observations 298 Fixed effects coefficients 3 Random effects coefficients 11 Covariance parameters 2 Formula: RATE ~ 1 + ANTS + LABEL + (1 | STATE) Model fit statistics: AIC BIC LogLikelihood Deviance -1158.9 -1140.4 584.45 -1168.9 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 0.031647 0.0044726 7.0757 295 1.0864e-11 0.022844 0.040449 {'ANTS' } 5.8999e-05 0.00046026 0.12819 295 0.89809 -0.00084681 0.00096481 {'LABEL_Poor nest'} -0.012768 0.0039439 -3.2373 295 0.0013442 -0.020529 -0.0050059 Random effects covariance parameters (95% CIs): Group: STATE (11 Levels) Name1 Name2 Type Estimate Lower Upper {'(Intercept)'} {'(Intercept)'} {'std'} 7.5587e-18 NaN NaN Group: Error Name Estimate Lower Upper {'Res Std'} 0.034041 0.031415 0.036887
But I strongly recommend you read the documentation carefully, to understand how to specify the model you want to fit.
  6 commentaires
Hari krishnan
Hari krishnan le 11 Oct 2021
  1. ANTS is a categorical variable
  2. I am trying to predict RATE from ANTS and LABEL (with STATE as random)
the cyclist
the cyclist le 11 Oct 2021
The first model I suggested treats ANTS as continuous numeric by default, so we need to convert it to categorical before putting it in the model.
This model has the interaction term as well:
data = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/764231/Entry_rates.xlsx'); % You can just read in your local file
data.ANTS = categorical(data.ANTS);
m = fitlme(data, 'RATE ~ (ANTS*LABEL) + (1 | STATE)')
m =
Linear mixed-effects model fit by ML Model information: Number of observations 298 Fixed effects coefficients 32 Random effects coefficients 11 Covariance parameters 2 Formula: RATE ~ 1 + ANTS*LABEL + (1 | STATE) Model fit statistics: AIC BIC LogLikelihood Deviance -1102.9 -977.18 585.44 -1170.9 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 0.03472 0.010729 3.2361 266 0.0013653 0.013595 0.055845 {'ANTS_2' } -0.00018056 0.014824 -0.01218 266 0.99029 -0.029369 0.029007 {'ANTS_3' } -0.0037793 0.014824 -0.25494 266 0.79897 -0.032967 0.025409 {'ANTS_4' } -0.005943 0.014824 -0.40089 266 0.68882 -0.035131 0.023245 {'ANTS_5' } -0.003487 0.014824 -0.23522 266 0.81422 -0.032675 0.025701 {'ANTS_6' } 0.0032408 0.014824 0.21861 266 0.82712 -0.025947 0.032429 {'ANTS_7' } -0.0024946 0.014824 -0.16828 266 0.86649 -0.031683 0.026693 {'ANTS_8' } -0.0020313 0.014824 -0.13703 266 0.89111 -0.031219 0.027157 {'ANTS_9' } -0.0075855 0.014824 -0.5117 266 0.60929 -0.036773 0.021602 {'ANTS_10' } -0.0038417 0.014824 -0.25915 266 0.79572 -0.03303 0.025346 {'ANTS_11' } -0.0023158 0.015589 -0.14855 266 0.88202 -0.033009 0.028378 {'ANTS_12' } -0.0037099 0.01672 -0.22188 266 0.82458 -0.03663 0.029211 {'ANTS_13' } -0.0022144 0.01672 -0.13244 266 0.89474 -0.035135 0.030706 {'ANTS_14' } 0.00054688 0.01752 0.031214 266 0.97512 -0.03395 0.035043 {'ANTS_15' } -0.0039004 0.01752 -0.22262 266 0.824 -0.038397 0.030596 {'ANTS_16' } -0.0043122 0.018583 -0.23205 266 0.81668 -0.040901 0.032277 {'LABEL_Poor nest' } -0.011158 0.014824 -0.75269 266 0.4523 -0.040346 0.01803 {'ANTS_2:LABEL_Poor nest' } -0.0077307 0.020714 -0.37322 266 0.70928 -0.048514 0.033053 {'ANTS_3:LABEL_Poor nest' } 9.4789e-05 0.020714 0.0045762 266 0.99635 -0.040689 0.040878 {'ANTS_4:LABEL_Poor nest' } -0.0033669 0.020965 -0.1606 266 0.87253 -0.044645 0.037911 {'ANTS_5:LABEL_Poor nest' } -0.0050268 0.020714 -0.24268 266 0.80844 -0.04581 0.035757 {'ANTS_6:LABEL_Poor nest' } -0.0076487 0.020714 -0.36926 266 0.71223 -0.048432 0.033135 {'ANTS_7:LABEL_Poor nest' } -0.0012082 0.020714 -0.05833 266 0.95353 -0.041992 0.039575 {'ANTS_8:LABEL_Poor nest' } 0.00011595 0.020714 0.0055978 266 0.99554 -0.040668 0.0409 {'ANTS_9:LABEL_Poor nest' } 0.0022824 0.020714 0.11019 266 0.91234 -0.038501 0.043066 {'ANTS_10:LABEL_Poor nest'} 0.00078623 0.020714 0.037957 266 0.96975 -0.039997 0.04157 {'ANTS_11:LABEL_Poor nest'} -0.0023263 0.021807 -0.10667 266 0.91513 -0.045264 0.040611 {'ANTS_12:LABEL_Poor nest'} -0.00027695 0.023423 -0.011824 266 0.99058 -0.046396 0.045842 {'ANTS_13:LABEL_Poor nest'} -0.0039373 0.023423 -0.16809 266 0.86664 -0.050056 0.042182 {'ANTS_14:LABEL_Poor nest'} 0.00067151 0.024566 0.027335 266 0.97821 -0.047696 0.049039 {'ANTS_15:LABEL_Poor nest'} 0.0014948 0.024566 0.06085 266 0.95152 -0.046873 0.049863 {'ANTS_16:LABEL_Poor nest'} 0.0053685 0.026081 0.20584 266 0.83707 -0.045983 0.05672 Random effects covariance parameters (95% CIs): Group: STATE (11 Levels) Name1 Name2 Type Estimate Lower Upper {'(Intercept)'} {'(Intercept)'} {'std'} 0 NaN NaN Group: Error Name Estimate Lower Upper {'Res Std'} 0.033928 0.031311 0.036764
Does that align better with the output you would expect, and can interpret?

Connectez-vous pour commenter.

Plus de réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by