solution of transcedental equation
14 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
function beta1 = trial0(beta, eps1, eps2, epsm,k0,h)
S1 = sqrt(power(beta,2)-(eps1*power(k0,2)));
S2 = sqrt(power(beta,2)-(epsm*power(k0,2)));
S3 = sqrt(power(beta,2)-(eps2*power(k0,2)));
beta1 = tanh(S2*h)*((eps1*eps2*power(S2,2))+(power(epsm,2)*S1*S3)) + (S2*((eps1*S3)+(eps2*S1))*epsm);
end
eps1 = 1.5471;
eps2 = 1.5431;
eps1m = -9.894 ;
epsm2 = 1.0458;
epsm = eps1m + i*eps2m;
lambda = 633;
k0 = (2*pi)/lambda;
h = 50;
find the value of beta
1 commentaire
Catalytic
le 14 Oct 2021
You have not accepted any answers previously provided to you. That is a bit of a disincentive for people to help you.
Réponse acceptée
Matt J
le 14 Oct 2021
Modifié(e) : Matt J
le 14 Oct 2021
eps1 = 1.5471;
eps2 = 1.5431;
eps1m = -9.894 ;
eps2m = 1.0458;
epsm = eps1m + i*eps2m;
lambda = 633;
k0 = (2*pi)/lambda;
h = 50;
[b,fval]=fminsearch(@(b) abs(trial0(complex(b(1),b(2)), eps1, eps2, epsm,k0,h)) ,[1,1]);
beta=complex(b(1),b(2)), fval
function beta1 = trial0(beta, eps1, eps2, epsm,k0,h)
S1 = sqrt(power(beta,2)-(eps1*power(k0,2)));
S2 = sqrt(power(beta,2)-(epsm*power(k0,2)));
S3 = sqrt(power(beta,2)-(eps2*power(k0,2)));
beta1 = tanh(S2*h)*((eps1*eps2*power(S2,2))+(power(epsm,2)*S1*S3)) + (S2*((eps1*S3)+(eps2*S1))*epsm);
end
7 commentaires
Matt J
le 14 Oct 2021
Well, if we've answered your first question, please Accept-click it and post the related question in its own thread.
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!