HOW TO CALCULATE THE DICE SIMILARITY OF THE IMAGES SUBPLOT.
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
mohd akmal masud
le 20 Oct 2021
Commenté : yanqi liu
le 27 Oct 2021
Hi all, I have 2 data set logical images(binary images). EACH DATA SET HAVE 23 IMAGES. I want to check the dice similarity.
Below is the code for aorigional images.
%% first, read the image data and labelled images
clc
clear all
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'labelledimages');
imds = imageDatastore(imageDir);
% view data set images origional
figure
for i = 1:23
subplot(5,5,i)
I = readimage(imds,i);
imshow(I)
title('training labels')
end

The the second one images code is below
%% second, read the binary images after segmentation
dataSetDir1 = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir1 = fullfile(dataSetDir1,'bnwaftersegmentation');
imds1 = imageDatastore(imageDir1);
% view data set images origional
figure
for ii = 1:23
subplot(5,5,ii)
II = readimage(imds1,ii);
imshow(II)
title('binary labels')
end

Then i used code below to know the dice similarity, but the answer is 0
similarity = dice(I, II)
similarity =
0
But I try test just one image (let say image number 11), its work.
s = imread('11.png');
d = imread('11.png');
similarity = dice(s,d)
similarity =
0.15119
ANYONE CAN HELP ME HOW TO CALCULATE THE TOTAL DICE SIMILSRITY FOR ALL 23 IMAGES
0 commentaires
Réponse acceptée
yanqi liu
le 26 Oct 2021
%% first, read the image data and labelled images
clc
clear all
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'labelledimages');
imds = imageDatastore(imageDir);
% view data set images origional
Is = [];
figure
for i = 1:23
subplot(5,5,i)
I = readimage(imds,i);
Is{end+1} = I;
imshow(I)
title('training labels')
end
%% second, read the binary images after segmentation
dataSetDir1 = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir1 = fullfile(dataSetDir1,'bnwaftersegmentation');
imds1 = imageDatastore(imageDir1);
% view data set images origional
Is2 = [];
figure
for ii = 1:23
subplot(5,5,ii)
II = readimage(imds1,ii);
Is2{end+1} = II;
imshow(II)
title('binary labels')
end
%% compare the dice similarity for every slice, like 1 with 1, 2 with 2, 3 with 3....and so on till 23 with 23..
similarity = [];
for i = 1 : 23
similarity(i) = dice(Is{i}, Is2{i});
fprintf('the dice similarity for %d with %d is %.3f\n', i, i, similarity(i));
end
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Matrox Hardware dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!