Optimization problem with lower and upper bounded constraints
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Anthony Sirico
le 1 Déc 2021
Commenté : Walter Roberson
le 1 Déc 2021
maximize:x0.063x4x7 −5.04x1 −0.035x2 −10x3 −3.36x5
subject to: x5 = 1.22x4 −x1
x6 = (98000 x3x4)/(x9 + 1000x3)
x8 = (x2 + x5)/x1
(99/100)x4 ≤x1(1.12 + 0.13167x8 −0.00667x28) ≤(100/99)x4
(99/100)x7 ≤86.35 + 1.098x8 −0.038x28 + 0.325(x6 −89) ≤(100/99)x7
(9/10)x9 ≤35.82 −0.222x10 ≤(10/9)x9
(99/100)x10 ≤−133 + 3x7 ≤(100/99)x10
[0,0,0,0,0,85,90,3,0.01,145] ≤x
x≤[2000,16000,120,5000,2000,93,95,12,4,162]
How do I represent constraints 4 through 6? This is what i have so far:
clc; clear
x = optimvar('x',10,'UpperBound',[2000;16000;120;5000;2000;93;95;12;4;162],"LowerBound",[0;0;0;0;0;85;90;3;0.01;145]);
prob = optimproblem("Objective",0.063*x(4)*x(7)-5.04*x(1)-0.035*x(2)-10*x(3)-3.36*x(5),"ObjectiveSense","maximize")
prob.Constraints.c1 = x(5) == 1.22*x(4)-x(1);
prob.Constraints.c2 = x(6) == 9800* x(3)/(x(4)*x(9)+1000*x(3));
prob.Constraints.c3 = x(8) == (x(2)+x(5))/x(1);
show(prob)
0 commentaires
Réponse acceptée
Walter Roberson
le 1 Déc 2021
clc; clear
x = optimvar('x',10,'UpperBound',[2000;16000;120;5000;2000;93;95;12;4;162],"LowerBound",[0;0;0;0;0;85;90;3;0.01;145]);
prob = optimproblem("Objective",0.063*x(4)*x(7)-5.04*x(1)-0.035*x(2)-10*x(3)-3.36*x(5),"ObjectiveSense","maximize")
prob.Constraints.c1 = x(5) == 1.22*x(4)-x(1);
prob.Constraints.c2 = x(6) == 9800* x(3)/(x(4)*x(9)+1000*x(3));
prob.Constraints.c3 = x(8) == (x(2)+x(5))/x(1);
prob.Constraints.c4 = (99/100)*x(4) <= x(1)*(1.12 + 0.1367*x(8) - 0.00667*x(2)*x(8));
prob.Constraints.c5 = x(1)*(1.12 + 0.1367*x(8) - 0.00667*x(2)*x(8)) <= (100/99)*x(4);
prob.Constraints.c6 = (99/100)*x(7) <= 86.35 + 1.098*x(8) - 0.038*x(2)*x(8) + 0.325*(x(6)-89);
prob.Constraints.c7 = 86.35 + 1.098*x(8) - 0.038*x(2)*x(8) + 0.325*(x(6)-89) <= (100/99)*x(7);
show(prob)
and so on.
I had to guess about what x28 was; I coded it as x(2)*x(8)
2 commentaires
Walter Roberson
le 1 Déc 2021
Yes, split the range inequality into two inequalities.
The x28 cannot be x^2 because x is a vector. Perhaps it is a clumsy x(8)^2
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!