Optimization problem with lower and upper bounded constraints

5 vues (au cours des 30 derniers jours)
Anthony Sirico
Anthony Sirico le 1 Déc 2021
Commenté : Walter Roberson le 1 Déc 2021
maximize:x0.063x4x7 5.04x1 0.035x2 10x3 3.36x5
subject to: x5 = 1.22x4 x1
x6 = (98000 x3x4)/(x9 + 1000x3)
x8 = (x2 + x5)/x1
(99/100)x4 x1(1.12 + 0.13167x8 0.00667x28) (100/99)x4
(99/100)x7 86.35 + 1.098x8 0.038x28 + 0.325(x6 89) (100/99)x7
(9/10)x9 35.82 0.222x10 (10/9)x9
(99/100)x10 ≤−133 + 3x7 (100/99)x10
[0,0,0,0,0,85,90,3,0.01,145] x
x[2000,16000,120,5000,2000,93,95,12,4,162]
How do I represent constraints 4 through 6? This is what i have so far:
clc; clear
x = optimvar('x',10,'UpperBound',[2000;16000;120;5000;2000;93;95;12;4;162],"LowerBound",[0;0;0;0;0;85;90;3;0.01;145]);
prob = optimproblem("Objective",0.063*x(4)*x(7)-5.04*x(1)-0.035*x(2)-10*x(3)-3.36*x(5),"ObjectiveSense","maximize")
prob.Constraints.c1 = x(5) == 1.22*x(4)-x(1);
prob.Constraints.c2 = x(6) == 9800* x(3)/(x(4)*x(9)+1000*x(3));
prob.Constraints.c3 = x(8) == (x(2)+x(5))/x(1);
show(prob)

Réponse acceptée

Walter Roberson
Walter Roberson le 1 Déc 2021
clc; clear
x = optimvar('x',10,'UpperBound',[2000;16000;120;5000;2000;93;95;12;4;162],"LowerBound",[0;0;0;0;0;85;90;3;0.01;145]);
prob = optimproblem("Objective",0.063*x(4)*x(7)-5.04*x(1)-0.035*x(2)-10*x(3)-3.36*x(5),"ObjectiveSense","maximize")
prob =
OptimizationProblem with properties: Description: '' ObjectiveSense: 'maximize' Variables: [1×1 struct] containing 1 OptimizationVariable Objective: [1×1 OptimizationExpression] Constraints: [0×0 struct] containing 0 OptimizationConstraints See problem formulation with show.
prob.Constraints.c1 = x(5) == 1.22*x(4)-x(1);
prob.Constraints.c2 = x(6) == 9800* x(3)/(x(4)*x(9)+1000*x(3));
prob.Constraints.c3 = x(8) == (x(2)+x(5))/x(1);
prob.Constraints.c4 = (99/100)*x(4) <= x(1)*(1.12 + 0.1367*x(8) - 0.00667*x(2)*x(8));
prob.Constraints.c5 = x(1)*(1.12 + 0.1367*x(8) - 0.00667*x(2)*x(8)) <= (100/99)*x(4);
prob.Constraints.c6 = (99/100)*x(7) <= 86.35 + 1.098*x(8) - 0.038*x(2)*x(8) + 0.325*(x(6)-89);
prob.Constraints.c7 = 86.35 + 1.098*x(8) - 0.038*x(2)*x(8) + 0.325*(x(6)-89) <= (100/99)*x(7);
show(prob)
OptimizationProblem : Solve for: x maximize : 0.063*x(4)*x(7) - 5.04*x(1) - 0.035*x(2) - 10*x(3) - 3.36*x(5) subject to c1: x(1) - 1.22*x(4) + x(5) == 0 subject to c2: x(6) == ((9800 .* x(3)) ./ ((x(4) .* x(9)) + (1000 .* x(3)))) subject to c3: x(8) == ((x(2) + x(5)) ./ x(1)) subject to c4: (0.99 .* x(4)) <= (x(1) .* ((1.12 + (0.1367 .* x(8))) - ((0.00667 .* x(2)) .* x(8)))) subject to c5: (x(1) .* ((1.12 + (0.1367 .* x(8))) - ((0.00667 .* x(2)) .* x(8)))) <= (1.0101 .* x(4)) subject to c6: (0.99 .* x(7)) <= (((86.35 + (1.098 .* x(8))) - ((0.038 .* x(2)) .* x(8))) + (0.325 .* (x(6) - 89))) subject to c7: (((86.35 + (1.098 .* x(8))) - ((0.038 .* x(2)) .* x(8))) + (0.325 .* (x(6) - 89))) <= (1.0101 .* x(7)) variable bounds: 0 <= x(1) <= 2000 0 <= x(2) <= 16000 0 <= x(3) <= 120 0 <= x(4) <= 5000 0 <= x(5) <= 2000 85 <= x(6) <= 93 90 <= x(7) <= 95 3 <= x(8) <= 12 0.01 <= x(9) <= 4 145 <= x(10) <= 162
and so on.
I had to guess about what x28 was; I coded it as x(2)*x(8)
  2 commentaires
Anthony Sirico
Anthony Sirico le 1 Déc 2021
Sorry its x^2...so did you break each of them up into 2 separate constraints?
Walter Roberson
Walter Roberson le 1 Déc 2021
Yes, split the range inequality into two inequalities.
The x28 cannot be x^2 because x is a vector. Perhaps it is a clumsy x(8)^2

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Get Started with Optimization Toolbox dans Help Center et File Exchange

Produits


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by