which COEF values to keep in PRINCOMP for EEG feature dimension reduction ?

5 vues (au cours des 30 derniers jours)
Khairul Bashar Syed
Khairul Bashar Syed le 26 Oct 2014
My EEG data contains 118 channels. Suppose for each trial I extract 4 features. Since all 118 channels have data for that trial, I have to extract 4 features from all those 118 channels.
So my feature matrix for each trial becomes 118*4 (channels*feature).
X is of size 118*4
[coef score latent]=princomp(X) %
Should I use princomp(X) or princomp(X')? If I use princomp(X), COEF is 4*4.
If LATENT shows that first 2 values have the most variance, should I use COEF(1:2,:) or COEF(:,1:2) as features? I mean first 2 rows or columns should I consider?
Will I use these 2*4 values as features instead of whole 118*4?
Please help

Réponses (0)

Catégories

En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by