Local polynomial approximation of functions - Taylor polynomial ?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
In my book I have example what I didnt know how to solve... Example: Construct the Taylor polynom for the function F (x) = (x - 1). (X - 2). (X - 3). (X - 4). (X - 5) = x.^5 - 15*x.^4 + 85*x.^3 - 225*x.^2 + 274.*x -120, in the middle u = 3 , for n = 1,3,5. Use this TaylorEval function :
---------------------------------------------------------------------------------------
function y = TaylorEval(t,u,x)
% TAYLOREVAL dava hodnoty Taylorovho polynomu vo vekt.argumente x
% y = TaylorEval(t,u,x),
% ---------------------------------------------------------------
% argin : t = vector koef. Taylor. polynom in middle u
% u = middle Tayl.pol.
% x = vector who want to evoulate p(x))
% argout: y = vector Taylor.pol. in vector x
%
n = length(t);
y = t(1)*ones(1, length(x));
for i = 2:n
y = (x - u).*y + t(i);
end
---------------------------------------------------------------------------------------
T(x,3,1) and T(x,3,3) plot in interval [2,4] must to get this plot:
http://i.imgur.com/M2gmlJv.jpg
>> I tried to solve like this:
u = 3;
n = [1 3 5];
p = poly([1 2 3 4 5]);
% for i = 0:3
% pv = polyval(p,3)
% p1 = polyder(p);
% p = p1;
% end
px1 = [-30 0 4 0];
x = linspace(2,4,201);
y = x.^5 - 15*x.^4 + 85*x.^3 - 225*x.^2 + 274.*x -120;
z1 = TaylorEval(px1,3,x);
plot(x,y,'b',x,z1,'r:')
% xlim([-2,4])
% ylim([-4,4])
shg
0 commentaires
Réponses (1)
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!