solving nonlinear equation using newton method
0 commentaires
Réponses (2)
0 commentaires
I revamped the software code scientific computing TCE programme, here is good answer I provided:
clc
clear all
close all
function [v1 , no_itr, norm1] = NewtonRaphson_nl(v,fn,jacob_fn,no_itr,err)
% nargin = no. of input arguments
if nargin <5 , no_itr = 20 ; end
if nargin <4 , error = 10^-5;no_itr = 20 ; end
if nargin <3 ,no_itr = 20;error = 10^-5; v = [1;1;1]; end
v1 = v;
fnv1 = fn(v1);
i = 0;
while true
jacob_fnv1 = jacob_fn(v1);
H = jacob_fnv1\(fnv1+eps);
v1 = v1 - H;
fnv1 = fn(v1);
i = i + 1;
norm1 = norm(fnv1);
if i > no_itr || norm1 < err
break
end
%if norm(fnv1) < error , break , end
end
end
function [v1 , no_itr, norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,err)
v1 = v;
fnv1 = fn(v1);
i = 0;
fprintf(' Iteration| x | y | Error | \n')
while true
norm1 = norm(fnv1);
fprintf('%10d |%10.4f| %10.4f | %10.4d | \n',i,v1(1),v1(2),norm1)
jacob_fnv1 = jacob_fn(v1);
H = jacob_fnv1\(fnv1+eps);
v1 = v1 - H;
fnv1 = fn(v1);
i = i + 1;
norm1 = norm(fnv1);
if i > no_itr || norm1 < err
break
end
%if norm(fnv1) < error , break , end
end
end
%Function NewtonRaphson_nl() is given below.
%For your provided input:
% f(x1,y1)4-x^2-y^2=0
% f(x2,y2)1-e^x-y=0
%I corrected for you:
fn = @(v)[(v(1)^2+v(2)^2)/4;v(2) + exp(v(1))];
jacob_fn = @(v)[v(1) v(2);exp(v(1)) 1];
err = 10^-7;
v = [1 ;-1.7];
no_itr = 25;
[point,no_itr,error_out]=NewtonRaphson_nl(v,fn,jacob_fn,no_itr,err)
[v1,no_itr,norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,err)
%x = -0.1:0.01:0.1;
%y = x;
syms x y
[xsol,ysol] = vpasolve(fn([x,y]) == 0,[x,y],[1 1])
f12 = fn([x,y])
fimplicit(f12(1),'r')
hold on
fimplicit(f12(2),'b')
xlabel X
ylabel Y
hold off
grid on
axis equal
title('1st function')
%For 2nd function example:
fn = @(v) [-v(1)^2-v(2)^2+4 ; 1-exp(v(1))-v(2)];
jacob_fn = @(v) [-2*v(1),-2*v(2);-exp(v(1)),-1];
[point,no_itr,error_out]=NewtonRaphson_nl(v,fn,jacob_fn,no_itr,err)
[v1,no_itr,norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,err)
syms x y
[xsol,ysol] = vpasolve(fn([x,y]) == 0,[x,y],[1 1])
f22 = fn([x,y])
fimplicit(f22(1),'r')
hold on
fimplicit(f22(2),'b')
xlabel X
ylabel Y
hold off
grid on
axis equal
title('2nd function')
fn = @(v)[2*v(1)^5+4;v(2) + exp(v(2))*exp(v(1))];
jacob_fn = @(v) [10*v(1)^4,0;exp(v(1))*exp(v(2)),exp(v(1))*exp(v(2))+1];
[point,no_itr,error_out]=NewtonRaphson_nl(v,fn,jacob_fn,no_itr,err)
[v1,no_itr,norm1] = NewtonRaphson_nl_print(v,fn,jacob_fn,no_itr,err)
syms x y
[xsol,ysol] = vpasolve(fn([x,y]) == 0,[x,y],[1 1])
f22 = fn([x,y])
fimplicit(f22(1),'r')
hold on
fimplicit(f22(2),'b')
xlabel X
ylabel Y
hold off
grid on
axis equal
title('3rd function')
%Constructed from needing help code by
%https://independent.academia.edu/PMazniker
%+380990535261
%https://diag.net/u/u6r3ondjie0w0l8138bafm095b
%https://github.com/goodengineer
%https://orcid.org/0000-0001-8184-8166
%https://willwork781147312.wordpress.com/portfolio/cp/
%https://www.youtube.com/channel/UCC__7jMOAHak0MVkUFtmO-w
%https://nanohub.org/members/130066
%https://pangian.com/user/hiretoserve/
%https://substack.com/profile/191772642-paul-m
2 commentaires
- I have added recently solution with clear root.
Voir également
Catégories
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!