how to generate ellipsoid in n=4

2 vues (au cours des 30 derniers jours)
imola
imola le 7 Nov 2014
Modifié(e) : imola le 17 Fév 2015
Dear All,
I want to generate ellipsoid in dimensions n=4,
Regards, Imola

Réponse acceptée

Matt J
Matt J le 7 Nov 2014
For any NxN positive definite matrix, A
x.'*A*x=1
is an implicit equation for an N-dimensional ellipsoid.
  2 commentaires
imola
imola le 7 Nov 2014
Modifié(e) : imola le 17 Fév 2015
Dear Matt,
Thanks for replying, the equation
(x-v).'*A*(x-v)=1
is general formula., it is written in Wikipedia that The parameters may be interpreted as spherical coordinates. and when I search for the last I found that we can find the spherical coordinates as follow
X1=r*cos(t1)
X2=r*sin(t1)cos(t2)
X3=r*sin(t1)sin(t2)cos(t3)
.
.
.
Xn-1=r*sin(t1)...sin(tn-2)cos(tn-1)
Xn=r*sin(t1)...sin(tn-2)sin(tn-1)
I really hope you agree with me it true, that will save me.
regards,
Imola
Matt J
Matt J le 8 Nov 2014
Modifié(e) : Matt J le 8 Nov 2014
so can I use them as parameters for the ellipsoid in higher dimensions but I just change the radius
You can if the ellipsoid is unrotated/translated. The equation for an unrotated ellipsoid centered at the origin is
sum (X(i)/e(i)).^2=1
You can see by direct substitution that the equation will be satisfied by an X of the form
X(1)=e(1)*cos(t1)
X(2)=e(2)*sin(t1)cos(t2)
X(3)=e(3)*sin(t1)sin(t2)cos(t3)
.
.
.
X(n-1)=e(n-1)*sin(t1)...sin(tn-2)cos(tn-1)
X(n)=e(n)*sin(t1)...sin(tn-2)sin(tn-1)
If the ellipsoid is rototranslated, you must apply a further transformation to X,
X'=R*X+t.
where R is an NxN orthogonal matrix and t a translation vector.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by