Global Optimizationproblem using Global Search
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Daniela Würmseer
le 7 Jan 2022
Commenté : Daniela Würmseer
le 13 Jan 2022
Hello, i am trying to use the globalSearch function to solve the following Optimization Problem:
min - x(3)
s.t. -x(1) -x(2) <= 0
-10*x(1)+x(1)^2-4*x(2)+x(2)^2+x(3) <= 0
3x(1) + x(2) <= 12
2x(1) + x(2) <= 9
x(1) + 2x(2) <= 12
x(1), x(2) >= 0
If you try a bit out you see that x(1) = 4, x(2) = 0, x(3) = 24 is the optimal solution.
But my Matlab Code gives a different solution and i do not know why.
Here my Code:
f=@(x)-x(3);
x0 = [0,0,0];
lb = [0,0,-Inf];
gs = GlobalSearch;
A = [-1 -1 0;
3 1 0;
2 1 0;
1 2 0];
b = [0; 12; 9; 12];
nonlincon = @constr;
problem = createOptimProblem('fmincon','x0',x0,'objective',f,'lb',lb,'Aineq',A,'bineq',b,'nonlcon',nonlincon)
x = run(gs,problem)
I would be thankful if someone could tell me if I did a mistake somewhere.
7 commentaires
Torsten
le 8 Jan 2022
function main
f=@(x)-x(3);
x0 = [0,0,0];
lb = [0,0,-Inf];
A = [-1 -1 0;
3 1 0;
2 1 0;
1 2 0];
b = [0; 12; 9; 12];
nonlcon = @constr;
sol = fmincon (f, x0, A, b, [], [], lb, [], nonlcon)
end
function [c,ceq] = constr(x)
c = -10*x(1)+x(1)^2-4*x(2)+x(2)^2+x(3);
ceq = [];
end
Réponse acceptée
Matt J
le 8 Jan 2022
We can verify that Torsten's solution is feasible as below. Since it gives a better objective function value than your experimental solution, your solution cannot be the correct one.
A = [-1 -1 0;
3 1 0;
2 1 0;
1 2 0];
b = [0; 12; 9; 12];
constr = @(x) -10*x(1)+x(1)^2-4*x(2)+x(2)^2+x(3);
x=[3.5000 1.5000 26.5000]';
b-A*x
constr(x)
6 commentaires
Matt J
le 13 Jan 2022
Modifié(e) : Matt J
le 13 Jan 2022
i still dont get the right solution and I dont know why
What do you mean "still"? I thought we established that you were getting the right solution all along.
That seems to be the case here again. The soluton you've shown is very close to x = (0,0,0,0).
Plus de réponses (1)
Matt J
le 8 Jan 2022
Modifié(e) : Matt J
le 8 Jan 2022
In fact, the problem can also be solved with quadprog, since it is equivalent to,
min -10*x(1)+x(1)^2-4*x(2)+x(2)^2
s.t.
3x(1) + x(2) <= 12
2x(1) + x(2) <= 9
x(1) + 2x(2) <= 12
x(1), x(2) >= 0
and since the objective function of the reformulated problem is srictly convex, it establishes that the solution is also unique:
f=@(x)-x(3);
x0 = [0,0,0];
lb = [0,0];
A =[3 1;
2 1;
1 2];
b = [12; 9; 12];
H=2*eye(2);
f=[-10;-4];
[x12,x3]=quadprog(H,f,A,b,[],[]);
x=[x12;-x3]'
0 commentaires
Voir également
Catégories
En savoir plus sur Linear Least Squares dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!