How to write a code for finding a definite integral for ( 1/x(t).^2 ) please?

3 vues (au cours des 30 derniers jours)
Avan Al-Saffar
Avan Al-Saffar le 13 Nov 2014
Commenté : Roger Stafford le 13 Nov 2014
My system is :
dx/dt = 2*x
1- I solved numerically using ode45.
2- Depending on the values that I got from ode45, I want to find this integral :
Integral ( 1/ x(t).^2 ) dt from 0 to 10
This is my code but I do not know if my result is correct or not,, how could I check that please?
function RunAvan
x0=0.1;
tspan=[0:0.1:10];
A=1;
[t,x]=ode45(@Avan,tspan,x0);
figure(1)
plot(t,x)
f = @(x) (A./x.^2)
Q1 = quad(f,1,20)
Q2 = quad(f,1,40)
Q3 = quad(f,1,60)
Q4 = quad(f,1,80)
Q5 = quad(f,1,101)
% I5=integral(f,1,101,'ArrayValued',true)
Q=[Q1./20 Q2./40 Q3./60 Q4./80 Q5./101]
B=[20 40 60 80 101]
figure(2)
plot(B,Q)
X = @(T) interp1(t,x,T);
f1 = @(T) (A./X(T).^2)
J1=integral(f1,0,2,'ArrayValued',true)
J2=integral(f1,0,4,'ArrayValued',true)
J3=integral(f1,0,6,'ArrayValued',true)
J4=integral(f1,0,8,'ArrayValued',true)
J5=integral(f1,0,10,'ArrayValued',true)
J=[J1./2 J2./4 J3./6 J4./8 J5./10]
R=[2 4 6 8 10]
figure(4)
plot(R,J)
1;
Note : The first time I integrated with respect to x and the second time with respect to t.
  1 commentaire
Torsten
Torsten le 13 Nov 2014
Are the functions involved only test functions ?
Or why do you use ode45, quad and integral instead of the analytical solutions in all cases ?
Best wishes
Torsten.

Connectez-vous pour commenter.

Réponses (1)

Roger Stafford
Roger Stafford le 13 Nov 2014
You can check it by comparing its results with the exact mathematical solution to your differential equation. The solution to dx/dt = 2*x is
x = K*exp(2*t)
where K can be determined by the initial condition. In your case that would be K = 0.1 . Taking the integral of 1/x^2 from 0 to u would give you
int(1/(K*exp(2*t))^2,'t',0,u) =
1/K^2*int(exp(-4*t),'t',0,u) =
100*(-exp(-4*u)/4+exp(-4*0)/4) =
25*(1-exp(-4*u))
where u is whatever upper limit you wish to use. Note that for the larger values of u your answer will be very close to 25.
  3 commentaires
Zoltán Csáti
Zoltán Csáti le 13 Nov 2014
Function int only works with symbolic objects.
Roger Stafford
Roger Stafford le 13 Nov 2014
My use of 'int' was meant only in place of the integral symbol and not to be used with matlab. For example
int(1/(K*exp(2*t))^2,'t',0,u)
meant only the integral of (K*exp(2*t))^2 with respect to t from t = 0 to t = u.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by